Skip to main contentIBM Quantum Documentation

Circuit Library

qiskit.circuit.library

The circuit library is a collection of valuable circuits and building blocks. We call these valuable for different reasons. For instance, they can be used as building blocks for algorithms, serve as benchmarks, or they are circuits conjectured to be difficult to simulate classically.

Elements in the circuit library are either QuantumCircuits or Instructions, allowing them to be easily investigated or plugged into other circuits. This enables fast prototyping and circuit design at higher levels of abstraction.

For example:

from qiskit.circuit import QuantumCircuit
from qiskit.circuit.library import PauliEvolutionGate
from qiskit.quantum_info import SparsePauliOp
 
hamiltonian = SparsePauliOp(["ZZI", "IZZ", "IXI"], coeffs=[1, 1, -1])
gate = PauliEvolutionGate(hamiltonian)
 
circuit = QuantumCircuit(hamiltonian.num_qubits)
circuit.append(gate, circuit.qubits)
 
circuit.draw("mpl")
A circuit implementing a Suzuki-Trotter expansion of a Hamiltonian evolution.

This library is organized in different sections:

We distinguish into different categories of operations:

Standard gates

These are fundamental quantum gates, a subset of which typically forms a basis gate set on a quantum computer. These are unitary operations represented as Gate. The library also provides standard compiler directives (a Barrier) and non-unitary operations (like Measure).

Abstract operations

This category includes operations that are defined by a mathematical action, but can be implemented with different decompositions. For example, a multi-controlled XGate flips the target qubit if all control qubits are 1|1\rangle, and there are a variety of concrete circuits implementing this operation using lower-level gates. Such abstract operations are represented as Gate or Instruction. This allows building the circuit without choosing a concrete implementation of each block and, finally, let the compiler (or you as user) choose the optimal decomposition. For example:

from qiskit.circuit.library import MCXGate
mcx = MCXGate(4)
 
from qiskit import QuantumCircuit
circuit = QuantumCircuit(5)
circuit.append(mcx, [0, 1, 4, 2, 3])
circuit.draw("mpl")
A circuit with a multi-controlled X gate.

For circuits with abstract operations, the circuit context is taken into account during transpilation. For example, if idle qubits are available, they can be used to obtain a shallower circuit:

from qiskit import transpile
 
small_circuit = QuantumCircuit(5)  # here we have no idle qubits
small_circuit.append(mcx, [0, 1, 4, 2, 3])
small_tqc = transpile(small_circuit, basis_gates=["u", "cx"])
print("No aux:", small_tqc.count_ops())
 
large_circuit = QuantumCircuit(10)  # now we will have 5 idle qubits
large_circuit.append(mcx, [0, 1, 4, 2, 3])
large_tqc = transpile(large_circuit, basis_gates=["u", "cx"])
print("With aux:", large_tqc.count_ops())

Which prints:

No aux: OrderedDict([('u', 41), ('cx', 36)])
With aux: OrderedDict([('u', 24), ('cx', 18)])

Structural operations

These operations have a unique decomposition. As the compiler does not need to reason about them on a higher level, they are implemented as functions that return a QuantumCircuit object. For example:

from qiskit.circuit.library import real_amplitudes
 
ansatz = real_amplitudes(5, entanglement="pairwise")
ansatz.draw("mpl")
The real amplitudes ansatz circuit.

Standard gates

These operations are reversible unitary gates and they all subclass Gate. As a consequence, they all have the methods to_matrix(), power(), and control(), which we can generally only apply to unitary operations.

For example:

from qiskit.circuit.library import XGate
gate = XGate()
print(gate.to_matrix())             # X gate
print(gate.power(1/2).to_matrix())  # √X gate -- see also the SXGate
print(gate.control(1).to_matrix())  # CX (controlled X) gate
[[0.+0.j 1.+0.j]
 [1.+0.j 0.+0.j]]
[[0.5+0.5j 0.5-0.5j]
 [0.5-0.5j 0.5+0.5j]]
[[1.+0.j 0.+0.j 0.+0.j 0.+0.j]
 [0.+0.j 0.+0.j 0.+0.j 1.+0.j]
 [0.+0.j 0.+0.j 1.+0.j 0.+0.j]
 [0.+0.j 1.+0.j 0.+0.j 0.+0.j]]

The function get_standard_gate_name_mapping() allows you to see the available standard gates and operations.

get_standard_gate_name_mapping

qiskit.circuit.library.get_standard_gate_name_mapping()

GitHub

Return a dictionary mapping the name of standard gates and instructions to an object for that name.

Examples

from qiskit.circuit.library import get_standard_gate_name_mapping
 
gate_name_map = get_standard_gate_name_mapping()
cx_object = gate_name_map["cx"]
 
print(cx_object)
print(type(cx_object))
Instruction(name='cx', num_qubits=2, num_clbits=0, params=[])
_SingletonCXGate

1-qubit standard gates

HGate(*args[, _force_mutable])Single-qubit Hadamard gate.
IGate(*args[, _force_mutable])Identity gate.
PhaseGate(theta[, label])Single-qubit rotation about the Z axis.
RGate(theta, phi[, label])Rotation θ around the cos(φ)x + sin(φ)y axis.
RXGate(theta[, label])Single-qubit rotation about the X axis.
RYGate(theta[, label])Single-qubit rotation about the Y axis.
RZGate(phi[, label])Single-qubit rotation about the Z axis.
SGate(*args[, _force_mutable])Single qubit S gate (Z**0.5).
SdgGate(*args[, _force_mutable])Single qubit S-adjoint gate (~Z**0.5).
SXGate(*args[, _force_mutable])The single-qubit Sqrt(X) gate (X\sqrt{X}).
SXdgGate(*args[, _force_mutable])The inverse single-qubit Sqrt(X) gate.
TGate(*args[, _force_mutable])Single qubit T gate (Z**0.25).
TdgGate(*args[, _force_mutable])Single qubit T-adjoint gate (~Z**0.25).
UGate(theta, phi, lam[, label])Generic single-qubit rotation gate with 3 Euler angles.
U1Gate(theta[, label])Single-qubit rotation about the Z axis.
U2Gate(phi, lam[, label])Single-qubit rotation about the X+Z axis.
U3Gate(theta, phi, lam[, label])Generic single-qubit rotation gate with 3 Euler angles.
XGate(*args[, _force_mutable])The single-qubit Pauli-X gate (σx\sigma_x).
YGate(*args[, _force_mutable])The single-qubit Pauli-Y gate (σy\sigma_y).
ZGate(*args[, _force_mutable])The single-qubit Pauli-Z gate (σz\sigma_z).

2-qubit standard gates

CHGate(*args[, _force_mutable])Controlled-Hadamard gate.
CPhaseGate(theta[, label, ctrl_state, ...])Controlled-Phase gate.
CRXGate(theta[, label, ctrl_state, _base_label])Controlled-RX gate.
CRYGate(theta[, label, ctrl_state, _base_label])Controlled-RY gate.
CRZGate(theta[, label, ctrl_state, _base_label])Controlled-RZ gate.
CSGate(*args[, _force_mutable])Controlled-S gate.
CSdgGate(*args[, _force_mutable])Controlled-S^dagger gate.
CSXGate(*args[, _force_mutable])Controlled-√X gate.
CUGate(theta, phi, lam, gamma[, label, ...])Controlled-U gate (4-parameter two-qubit gate).
CU1Gate(theta[, label, ctrl_state, _base_label])Controlled-U1 gate.
CU3Gate(theta, phi, lam[, label, ...])Controlled-U3 gate (3-parameter two-qubit gate).
CXGate(*args[, _force_mutable])Controlled-X gate.
CYGate(*args[, _force_mutable])Controlled-Y gate.
CZGate(*args[, _force_mutable])Controlled-Z gate.
DCXGate(*args[, _force_mutable])Double-CNOT gate.
ECRGate(*args[, _force_mutable])An echoed cross-resonance gate.
iSwapGate(*args[, _force_mutable])iSWAP gate.
RXXGate(theta[, label])A parametric 2-qubit XXX \otimes X interaction (rotation about XX).
RYYGate(theta[, label])A parametric 2-qubit YYY \otimes Y interaction (rotation about YY).
RZXGate(theta[, label])A parametric 2-qubit ZXZ \otimes X interaction (rotation about ZX).
RZZGate(theta[, label])A parametric 2-qubit ZZZ \otimes Z interaction (rotation about ZZ).
SwapGate(*args[, _force_mutable])The SWAP gate.
XXMinusYYGate(theta[, beta, label])XX-YY interaction gate.
XXPlusYYGate(theta[, beta, label])XX+YY interaction gate.

3+ qubit standard gates

C3SXGate(*args[, _force_mutable])The 3-qubit controlled sqrt-X gate.
C3XGate(*args[, _force_mutable])The X gate controlled on 3 qubits.
C4XGate(*args[, _force_mutable])The 4-qubit controlled X gate.
CCXGate(*args[, _force_mutable])CCX gate, also known as Toffoli gate.
CCZGate(*args[, _force_mutable])CCZ gate.
CSwapGate(*args[, _force_mutable])Controlled-SWAP gate, also known as the Fredkin gate.
RCCXGate(*args[, _force_mutable])The simplified Toffoli gate, also referred to as Margolus gate.
RC3XGate(*args[, _force_mutable])The simplified 3-controlled Toffoli gate.

Global standard gates

The following gate is global and does not take any qubit arguments.

GlobalPhaseGate(phase[, label])The global phase gate (eiθe^{i\theta}).

Standard Directives

Directives are operations to the quantum stack that are meant to be interpreted by the backend or the transpiler. In general, the transpiler or backend might optionally ignore them if there is no implementation for them.


Standard Operations

Operations are non-reversible changes in the quantum state of the circuit.


Generalized Gates

This module extends the standard gates with a broader collection of basic gates. This includes gates that are variadic, meaning that the number of qubits depends on the input. For example:

from qiskit.circuit.library import DiagonalGate
 
diagonal = DiagonalGate([1, 1j])
print(diagonal.num_qubits)
 
diagonal = DiagonalGate([1, 1, 1, -1])
print(diagonal.num_qubits)

which prints:

1
2
DiagonalGate(diag)A generic diagonal quantum gate.
PermutationGate(pattern)A gate that permutes qubits.
MCMTGate(gate, num_ctrl_qubits, ...[, ...])The multi-controlled multi-target gate, for an arbitrary singly controlled target gate.
MCPhaseGate(lam, num_ctrl_qubits[, label, ...])Multi-controlled-Phase gate.
MCXGate([num_ctrl_qubits, label, ...])The general, multi-controlled X gate.
MSGate(num_qubits, theta[, label])The Mølmer–Sørensen gate.
RVGate(v_x, v_y, v_z[, basis])Rotation around arbitrary rotation axis v\vec{v} where v2\|\vec{v}\|_2 is angle of rotation in radians.
PauliGate(label)A multi-qubit Pauli gate.
LinearFunction(linear[, validate_input])A linear reversible circuit on n qubits.
Isometry(isometry, num_ancillas_zero, ...[, ...])Decomposition of arbitrary isometries from mm to nn qubits.
UnitaryGate(data[, label, check_input, ...])Class quantum gates specified by a unitary matrix.
UCGate(gate_list[, up_to_diagonal, mux_simp])Uniformly controlled gate (also called multiplexed gate).
UCPauliRotGate(angle_list, rot_axis)Uniformly controlled Pauli rotations.
UCRXGate(angle_list)Uniformly controlled Pauli-X rotations.
UCRYGate(angle_list)Uniformly controlled Pauli-Y rotations.
UCRZGate(angle_list)Uniformly controlled Pauli-Z rotations.

The above objects derive Gate or Instruction, which allows the compiler to reason about them on an abstract level. We therefore suggest using these instead of the following, which derive QuantumCircuit and are eagerly constructed.

Diagonal(diag)Circuit implementing a diagonal transformation.
MCMT(gate, num_ctrl_qubits, num_target_qubits)The multi-controlled multi-target gate, for an arbitrary singly controlled target gate.
MCMTVChain(gate, num_ctrl_qubits, ...)The MCMT implementation using the CCX V-chain.
MCXGrayCode([num_ctrl_qubits, label, ...])Implement the multi-controlled X gate using the Gray code.
MCXRecursive([num_ctrl_qubits, label, ...])Implement the multi-controlled X gate using recursion.
MCXVChain([num_ctrl_qubits, dirty_ancillas, ...])Implement the multi-controlled X gate using a V-chain of CX gates.
Permutation(num_qubits[, pattern, seed])An n_qubit circuit that permutes qubits.
GMS(num_qubits, theta)Global Mølmer–Sørensen gate.
GR(num_qubits, theta, phi)Global R gate.
GRX(num_qubits, theta)Global RX gate.
GRY(num_qubits, theta)Global RY gate.
GRZ(num_qubits, phi)Global RZ gate.

Boolean Logic

These Gates implement boolean logic operations, such as the logical or of a set of qubit states.

AndGate(num_variable_qubits[, flags])A gate representing the logical AND operation on a number of qubits.
OrGate(num_variable_qubits[, flags])A gate representing the logical OR operation on a number of qubits.
BitwiseXorGate(num_qubits, amount)An n-qubit gate for bitwise xor-ing the input with some integer amount.
InnerProductGate(num_qubits)A 2n-qubit Boolean function that computes the inner product of two n-qubit vectors over F2F_2.

The above objects derive Gate (or return this type), which allows the compiler to reason about them on an abstract level. We therefore suggest using these instead of the following which derive QuantumCircuit and are eagerly constructed.

AND(num_variable_qubits[, flags, mcx_mode])A circuit implementing the logical AND operation on a number of qubits.
OR(num_variable_qubits[, flags, mcx_mode])A circuit implementing the logical OR operation on a number of qubits.
XOR(num_qubits[, amount, seed])An n_qubit circuit for bitwise xor-ing the input with some integer amount.
InnerProduct(num_qubits)A 2n-qubit Boolean function that computes the inner product of two n-qubit vectors over F2F_2.

A random bitwise xor circuit can be directly generated using:

random_bitwise_xor(num_qubits, seed)Create a random BitwiseXorGate.

Basis Change

These gates perform basis transformations of the qubit states. For example, in the case of the Quantum Fourier Transform (QFT), it transforms between the computational basis and the Fourier basis.

QFTGate(num_qubits)Quantum Fourier Transform Gate.

The above object derives Gate, which allows the compiler to reason about it on an abstract level. We therefore suggest using this instead of the following which derives QuantumCircuit and is eagerly constructed.

QFT([num_qubits, approximation_degree, ...])Quantum Fourier Transform Circuit.

Arithmetic

These gates and circuits perform classical arithmetic, such as addition or multiplication.

Adders

Adders compute the sum of two nn-qubit registers, that is

anbnana+bt,|a\rangle_n |b\rangle_n \mapsto |a\rangle_n |a + b\rangle_{t},

where the size tt of the output register depends on the type of adder used.

ModularAdderGate(num_state_qubits[, label])Compute the sum modulo 2n2^n of two nn-sized qubit registers.
HalfAdderGate(num_state_qubits[, label])Compute the sum of two equally-sized qubit registers, including a carry-out bit.
FullAdderGate(num_state_qubits[, label])Compute the sum of two nn-sized qubit registers, including carry-in and -out bits.

The above objects derive Gate, which allows the compiler to reason about them on an abstract level. We therefore suggest using these instead of the following which derive QuantumCircuit and are eagerly constructed.

DraperQFTAdder(num_state_qubits[, kind, name])A circuit that uses QFT to perform in-place addition on two qubit registers.
CDKMRippleCarryAdder(num_state_qubits[, ...])A ripple-carry circuit to perform in-place addition on two qubit registers.
VBERippleCarryAdder(num_state_qubits[, ...])The VBE ripple carry adder [1].

Multipliers

Multipliers compute the product of two nn-qubit registers, that is

anbn0tanbnabt,|a\rangle_n |b\rangle_n |0\rangle_{t} \mapsto |a\rangle_n |b\rangle_n |a \cdot b\rangle_t,

where tt is the number of bits used to represent the result.

MultiplierGate(num_state_qubits[, ...])Compute the product of two equally sized qubit registers into a new register.

The above object derives Gate, which allows the compiler to reason about it on an abstract level. We therefore suggest using this instead of the following which derive QuantumCircuit and are eagerly constructed.

HRSCumulativeMultiplier(num_state_qubits[, ...])A multiplication circuit to store product of two input registers out-of-place.
RGQFTMultiplier(num_state_qubits[, ...])A QFT multiplication circuit to store product of two input registers out-of-place.

Amplitude Functions

An amplitude function approximates a function f:{0,...,2n1}[0,1]f: \{0, ..., 2^n - 1\} \rightarrow [0, 1] applied on the amplitudes of nn qubits. See the class docstring for more detailed information.

LinearAmplitudeFunctionGate(...[, ...])A circuit implementing a (piecewise) linear function on qubit amplitudes.

The above object derives Gate, which allows the compiler to reason about it on an abstract level. We therefore suggest using this instead of the following which derives QuantumCircuit and is eagerly constructed.

LinearAmplitudeFunction(num_state_qubits, ...)A circuit implementing a (piecewise) linear function on qubit amplitudes.

Functional Pauli Rotations

Functional Pauli rotations implement operations of the form

x0cos(f(x))x0+sin(f(x))x1|x\rangle |0\rangle \mapsto \cos(f(x))|x\rangle|0\rangle + \sin(f(x))|x\rangle|1\rangle

using Pauli-YY rotations for different types of functions ff, such as linear, polynomial, or a piecewise version of these. They are similar to the amplitude functions above, but without pre- and post-processing for the domain and image of the target function.

LinearPauliRotationsGate(num_state_qubits[, ...])Linearly-controlled X, Y or Z rotation.
PolynomialPauliRotationsGate(num_state_qubits)A gate implementing polynomial Pauli rotations.
PiecewiseLinearPauliRotationsGate([...])Piecewise-linearly-controlled Pauli rotations.
PiecewisePolynomialPauliRotationsGate(...[, ...])Piecewise-polynomially-controlled Pauli rotations.
PiecewiseChebyshevGate(f_x, num_state_qubits)Piecewise Chebyshev approximation to an input function.

The above objects derive Gate, which allows the compiler to reason about them on an abstract level. We therefore suggest using these instead of the following which derive QuantumCircuit and are eagerly constructed.

FunctionalPauliRotations([num_state_qubits, ...])Base class for functional Pauli rotations.
LinearPauliRotations([num_state_qubits, ...])Linearly-controlled X, Y or Z rotation.
PolynomialPauliRotations([num_state_qubits, ...])A circuit implementing polynomial Pauli rotations.
PiecewiseLinearPauliRotations([...])Piecewise-linearly-controlled Pauli rotations.
PiecewisePolynomialPauliRotations([...])Piecewise-polynomially-controlled Pauli rotations.
PiecewiseChebyshev(f_x[, degree, ...])Piecewise Chebyshev approximation to an input function.

Other arithmetic functions

Here we list additional arithmetic circuits. See the individual class docstrings for more details.

ExactReciprocalGate(num_state_qubits, scaling)Implements an exact reciprocal function.
IntegerComparatorGate(num_state_qubits, value)Perform a \geq (or <<) on a qubit register against a classical integer.
QuadraticFormGate([num_result_qubits, ...])Implements a quadratic form on binary variables encoded in qubit registers.
WeightedSumGate(num_state_qubits[, weights, ...])A gate to compute the weighted sum of qubit registers.

The above objects derive Gate, which allows the compiler to reason about them on an abstract level. We therefore suggest using these instead of the following which derive QuantumCircuit and are eagerly constructed.

ExactReciprocal(num_state_qubits, scaling[, ...])Exact reciprocal
IntegerComparator([num_state_qubits, value, ...])Integer Comparator.
QuadraticForm([num_result_qubits, ...])Implements a quadratic form on binary variables encoded in qubit registers.
WeightedAdder([num_state_qubits, weights, name])A circuit to compute the weighted sum of qubit registers.

Particular Quantum Circuits

The following gates and quantum circuits define specific operations of interest:

fourier_checking(f, g)Fourier checking circuit.
hidden_linear_function(adjacency_matrix)Circuit to solve the hidden linear function problem.
iqp(interactions)Instantaneous quantum polynomial time (IQP) circuit.
random_iqp(num_qubits[, seed])A random instantaneous quantum polynomial time (IQP) circuit.
quantum_volume(num_qubits[, depth, seed])A quantum volume model circuit.
phase_estimation(num_evaluation_qubits, unitary)Phase Estimation circuit.
grover_operator(oracle[, state_preparation, ...])Construct the Grover operator.
unitary_overlap(unitary1, unitary2[, ...])Circuit that returns the overlap between two unitaries U2U1U_2^{\dag} U_1.
GraphStateGate(adjacency_matrix)A gate representing a graph state.
PauliEvolutionGate(operator[, time, label, ...])Time-evolution of an operator consisting of Paulis.
HamiltonianGate(data, time[, label])Class for representing evolution by a Hamiltonian operator as a gate.

Below we provide the same operations as classes deriving QuantumCircuit. For better runtime and compiler performance, however, we suggest using above functions and gates.

FourierChecking(f, g)Fourier checking circuit.
GraphState(adjacency_matrix)Circuit to prepare a graph state.
HiddenLinearFunction(adjacency_matrix)Circuit to solve the hidden linear function problem.
IQP(interactions)Instantaneous quantum polynomial (IQP) circuit.
QuantumVolume(num_qubits[, depth, seed, ...])A quantum volume model circuit.
PhaseEstimation(num_evaluation_qubits, unitary)Phase Estimation circuit.
GroverOperator(oracle[, state_preparation, ...])The Grover operator.
UnitaryOverlap(unitary1, unitary2[, ...])Circuit that returns the overlap between two unitaries U2U1U_2^{\dag} U_1.

N-local circuits

The following functions return a parameterized QuantumCircuit to use as ansatz in a broad set of variational quantum algorithms.

For example, we can build a variational circuit

The efficient SU2 ansatz circuit...

and combine it with

from qiskit.circuit.library import zz_feature_map
 
circuit = zz_feature_map(num_qubits)
circuit.barrier()
circuit.compose(ansatz, inplace=True)
 
circuit.draw("mpl")
... combined with the ZZ feature map. ... combined with the ZZ feature map.

to obtain a circuit for variational quantum classification.

The following functions all construct variational circuits and are optimized for a fast construction:

n_local(num_qubits, rotation_blocks, ...[, ...])Construct an n-local variational circuit.
efficient_su2(num_qubits[, su2_gates, ...])The hardware-efficient SU(2)SU(2) 2-local circuit.
real_amplitudes(num_qubits[, entanglement, ...])Construct a real-amplitudes 2-local circuit.
pauli_two_design(num_qubits[, reps, seed, ...])Construct a Pauli 2-design ansatz.
excitation_preserving(num_qubits[, mode, ...])The heuristic excitation-preserving wave function ansatz.
qaoa_ansatz(cost_operator[, reps, ...])A generalized QAOA quantum circuit with a support of custom initial states and mixers.
hamiltonian_variational_ansatz(hamiltonian)Construct a Hamiltonian variational ansatz.
evolved_operator_ansatz(operators[, reps, ...])Construct an ansatz out of operator evolutions.

While we suggest using the above functions, we also continue supporting the following BlueprintCircuit, which wrap the circuits into a block and allow for inplace mutations of the circuits:

NLocal([num_qubits, rotation_blocks, ...])The n-local circuit class.
TwoLocal([num_qubits, rotation_blocks, ...])The two-local circuit.
PauliTwoDesign([num_qubits, reps, seed, ...])The Pauli Two-Design ansatz.
RealAmplitudes([num_qubits, entanglement, ...])The real-amplitudes 2-local circuit.
EfficientSU2([num_qubits, su2_gates, ...])The hardware efficient SU(2) 2-local circuit.
EvolvedOperatorAnsatz([operators, reps, ...])The evolved operator ansatz.
ExcitationPreserving([num_qubits, mode, ...])The heuristic excitation-preserving wave function ansatz.
QAOAAnsatz([cost_operator, reps, ...])A generalized QAOA quantum circuit with a support of custom initial states and mixers.

Data encoding circuits

The following functions return a parameterized QuantumCircuit to use as data encoding circuits in a series of variational quantum algorithms:

pauli_feature_map(feature_dimension[, reps, ...])The Pauli expansion circuit.
z_feature_map(feature_dimension[, reps, ...])The first order Pauli Z-evolution circuit.
zz_feature_map(feature_dimension[, reps, ...])Second-order Pauli-Z evolution circuit.

While we suggest using the above functions, we also continue supporting the following BlueprintCircuit, which wrap the circuits into a block and allow for inplace mutations of the circuits:

PauliFeatureMap([feature_dimension, reps, ...])The Pauli Expansion circuit.
ZFeatureMap(feature_dimension[, reps, ...])The first order Pauli Z-evolution circuit.
ZZFeatureMap(feature_dimension[, reps, ...])Second-order Pauli-Z evolution circuit.

Data preparation circuits

The following operations are used for state preparation:

StatePreparation(params[, num_qubits, ...])Complex amplitude state preparation.
Initialize(params[, num_qubits, normalize])Complex amplitude initialization.

Oracles

An “oracle” can refer to a variety of black-box operations on quantum states. Here, we consider oracles implementing boolean functions f:{0,...,2n1}{0,1}f: \{0, ..., 2^n - 1\} \rightarrow \{0, 1\} via phase-flips

xn(1)f(x)xn,|x\rangle_n \mapsto (-1)^{f(x)} |x\rangle_n,

or bit-flips

xnbxnbf(x).|x\rangle_n |b\rangle \mapsto |x\rangle_n |b \oplus f(x)\rangle.

These are implemented in

PhaseOracleGate(expression[, var_order, label])Implements a phase oracle.
BitFlipOracleGate(expression[, var_order, label])Implements a bit-flip oracle

and an important building block for Grover’s algorithm (see grover_operator()).

In addition to the Gate-based implementation we also support the QuantumCircuit-version of the phase flip oracle

PhaseOracle(expression[, var_order])Phase Oracle.

Template circuits

Templates are functions that return circuits that compute the identity. They are used at circuit optimization where matching part of the template allows the compiler to replace the match with the inverse of the remainder from the template.

In this example, the identity constant in a template is checked:

from qiskit.circuit.library.templates import template_nct_4b_1
from qiskit.quantum_info import Operator
import numpy as np
 
template = template_nct_4b_1()
 
identity = np.identity(2 ** len(template.qubits), dtype=complex)
data = Operator(template).data
np.allclose(data, identity)  # True, template_nct_4b_1 is the identity

NCT (Not-CNOT-Toffoli) template circuits

Template circuits for XGate, CXGate, and CCXGate (Toffoli) gates.

Reference: Maslov, D. and Dueck, G. W. and Miller, D. M., Techniques for the synthesis of reversible Toffoli networks, 2007 http://dx.doi.org/10.1145/1278349.1278355

template_nct_2a_1

qiskit.circuit.library.templates.nct.template_nct_2a_1()

GitHub

Template 2a_1:

     ┌───┐┌───┐
q_0: ┤ X ├┤ X ├
     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_2a_2

qiskit.circuit.library.templates.nct.template_nct_2a_2()

GitHub

Template 2a_2:

q_0: ──■────■──
     ┌─┴─┐┌─┴─┐
q_1: ┤ X ├┤ X ├
     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_2a_3

qiskit.circuit.library.templates.nct.template_nct_2a_3()

GitHub

Template 2a_3:

q_0: ──■────■──
       │    │
q_1: ──■────■──
     ┌─┴─┐┌─┴─┐
q_2: ┤ X ├┤ X ├
     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_4a_1

qiskit.circuit.library.templates.nct.template_nct_4a_1()

GitHub

Template 4a_1:

q_0: ───────■─────────■──
            │         │
q_1: ──■────┼────■────┼──
       │    │    │    │
q_2: ──■────■────■────■──
       │  ┌─┴─┐  │  ┌─┴─┐
q_3: ──┼──┤ X ├──┼──┤ X ├
     ┌─┴─┐└───┘┌─┴─┐└───┘
q_4: ┤ X ├─────┤ X ├─────
     └───┘     └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_4a_2

qiskit.circuit.library.templates.nct.template_nct_4a_2()

GitHub

Template 4a_2:

q_0: ──■─────────■───────
       │         │
q_1: ──■────■────■────■──
       │  ┌─┴─┐  │  ┌─┴─┐
q_2: ──┼──┤ X ├──┼──┤ X ├
     ┌─┴─┐└───┘┌─┴─┐└───┘
q_3: ┤ X ├─────┤ X ├─────
     └───┘     └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_4a_3

qiskit.circuit.library.templates.nct.template_nct_4a_3()

GitHub

Template 4a_3:

q_0: ──■────■────■────■──
       │  ┌─┴─┐  │  ┌─┴─┐
q_1: ──┼──┤ X ├──┼──┤ X ├
     ┌─┴─┐└───┘┌─┴─┐└───┘
q_2: ┤ X ├─────┤ X ├─────
     └───┘     └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_4b_1

qiskit.circuit.library.templates.nct.template_nct_4b_1()

GitHub

Template 4b_1:

q_0: ───────■─────────■──
            │         │
q_1: ──■────┼────■────┼──
       │    │    │    │
q_2: ──■────■────■────■──
     ┌─┴─┐┌─┴─┐┌─┴─┐┌─┴─┐
q_3: ┤ X ├┤ X ├┤ X ├┤ X ├
     └───┘└───┘└───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_4b_2

qiskit.circuit.library.templates.nct.template_nct_4b_2()

GitHub

Template 4b_2:

q_0: ──■─────────■───────
       │         │
q_1: ──■────■────■────■──
     ┌─┴─┐┌─┴─┐┌─┴─┐┌─┴─┐
q_2: ┤ X ├┤ X ├┤ X ├┤ X ├
     └───┘└───┘└───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_5a_1

qiskit.circuit.library.templates.nct.template_nct_5a_1()

GitHub

Template 5a_1:

q_0: ──■────■────■────■────■──
       │  ┌─┴─┐  │  ┌─┴─┐  │
q_1: ──■──┤ X ├──■──┤ X ├──┼──
     ┌─┴─┐└───┘┌─┴─┐└───┘┌─┴─┐
q_2: ┤ X ├─────┤ X ├─────┤ X ├
     └───┘     └───┘     └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_5a_2

qiskit.circuit.library.templates.nct.template_nct_5a_2()

GitHub

Template 5a_2:

q_0: ──■─────────■─────────■──
       │  ┌───┐  │  ┌───┐  │
q_1: ──■──┤ X ├──■──┤ X ├──┼──
     ┌─┴─┐└───┘┌─┴─┐└───┘┌─┴─┐
q_2: ┤ X ├─────┤ X ├─────┤ X ├
     └───┘     └───┘     └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_5a_3

qiskit.circuit.library.templates.nct.template_nct_5a_3()

GitHub

Template 5a_3:

q_0: ───────■─────────■────■──
          ┌─┴─┐     ┌─┴─┐  │
q_1: ──■──┤ X ├──■──┤ X ├──┼──
     ┌─┴─┐└───┘┌─┴─┐└───┘┌─┴─┐
q_2: ┤ X ├─────┤ X ├─────┤ X ├
     └───┘     └───┘     └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_5a_4

qiskit.circuit.library.templates.nct.template_nct_5a_4()

GitHub

Template 5a_4:

          ┌───┐     ┌───┐
q_0: ──■──┤ X ├──■──┤ X ├
     ┌─┴─┐└───┘┌─┴─┐├───┤
q_1: ┤ X ├─────┤ X ├┤ X ├
     └───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_6a_1

qiskit.circuit.library.templates.nct.template_nct_6a_1()

GitHub

Template 6a_1:

          ┌───┐     ┌───┐     ┌───┐
q_0: ──■──┤ X ├──■──┤ X ├──■──┤ X ├
     ┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘
q_1: ┤ X ├──■──┤ X ├──■──┤ X ├──■──
     └───┘     └───┘     └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_6a_2

qiskit.circuit.library.templates.nct.template_nct_6a_2()

GitHub

Template 6a_2:

q_0: ──■────■────■────■────■────■──
       │  ┌─┴─┐  │  ┌─┴─┐  │  ┌─┴─┐
q_1: ──■──┤ X ├──■──┤ X ├──■──┤ X ├
     ┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘
q_2: ┤ X ├──■──┤ X ├──■──┤ X ├──■──
     └───┘     └───┘     └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_6a_3

qiskit.circuit.library.templates.nct.template_nct_6a_3()

GitHub

Template 6a_3:

q_0: ───────■─────────■────■────■──
          ┌─┴─┐     ┌─┴─┐  │  ┌─┴─┐
q_1: ──■──┤ X ├──■──┤ X ├──■──┤ X ├
     ┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘
q_2: ┤ X ├──■──┤ X ├──■──┤ X ├──■──
     └───┘     └───┘     └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_6a_4

qiskit.circuit.library.templates.nct.template_nct_6a_4()

GitHub

Template 6a_4:

q_0: ───────■──────────────■───────
          ┌─┴─┐     ┌───┐  │  ┌───┐
q_1: ──■──┤ X ├──■──┤ X ├──■──┤ X ├
     ┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘
q_2: ┤ X ├──■──┤ X ├──■──┤ X ├──■──
     └───┘     └───┘     └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_6b_1

qiskit.circuit.library.templates.nct.template_nct_6b_1()

GitHub

Template 6b_1:

q_0: ──■─────────■────■─────────■──
       │       ┌─┴─┐  │       ┌─┴─┐
q_1: ──■────■──┤ X ├──■────■──┤ X ├
     ┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
     └───┘└───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_6b_2

qiskit.circuit.library.templates.nct.template_nct_6b_2()

GitHub

Template 6b_2:

q_0: ───────■────■─────────■────■──
            │  ┌─┴─┐       │  ┌─┴─┐
q_1: ──■────■──┤ X ├──■────■──┤ X ├
     ┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
     └───┘└───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_6c_1

qiskit.circuit.library.templates.nct.template_nct_6c_1()

GitHub

Template 6c_1:

q_0: ──■─────────■─────────■────■──
       │  ┌───┐  │  ┌───┐  │  ┌─┴─┐
q_1: ──■──┤ X ├──■──┤ X ├──■──┤ X ├
     ┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘
q_2: ┤ X ├──■──┤ X ├──■──┤ X ├──■──
     └───┘     └───┘     └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_7a_1

qiskit.circuit.library.templates.nct.template_nct_7a_1()

GitHub

Template 7a_1:

     ┌───┐                    ┌───┐
q_0: ┤ X ├──■─────────■────■──┤ X ├──■──
     └─┬─┘┌─┴─┐       │  ┌─┴─┐└─┬─┘  │
q_1: ──■──┤ X ├──■────■──┤ X ├──■────■──
          └───┘┌─┴─┐┌─┴─┐└───┘     ┌─┴─┐
q_2: ──────────┤ X ├┤ X ├──────────┤ X ├
               └───┘└───┘          └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_7b_1

qiskit.circuit.library.templates.nct.template_nct_7b_1()

GitHub

Template 7b_1:

     ┌───┐                    ┌───┐
q_0: ┤ X ├──■─────────■────■──┤ X ├──■──
     └───┘┌─┴─┐       │  ┌─┴─┐└───┘  │
q_1: ─────┤ X ├──■────■──┤ X ├───────■──
          └───┘┌─┴─┐┌─┴─┐└───┘     ┌─┴─┐
q_2: ──────────┤ X ├┤ X ├──────────┤ X ├
               └───┘└───┘          └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_7c_1

qiskit.circuit.library.templates.nct.template_nct_7c_1()

GitHub

Template 7c_1:

     ┌───┐                    ┌───┐
q_0: ┤ X ├──■─────────■────■──┤ X ├──■──
     └───┘┌─┴─┐       │  ┌─┴─┐└───┘  │
q_1: ─────┤ X ├──■────■──┤ X ├───────■──
          └─┬─┘┌─┴─┐┌─┴─┐└─┬─┘     ┌─┴─┐
q_2: ───────■──┤ X ├┤ X ├──■───────┤ X ├
               └───┘└───┘          └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_7d_1

qiskit.circuit.library.templates.nct.template_nct_7d_1()

GitHub

Template 7d_1:

     ┌───┐                    ┌───┐
q_0: ┤ X ├──■─────────■────■──┤ X ├──■──
     └─┬─┘┌─┴─┐       │  ┌─┴─┐└─┬─┘  │
q_1: ──■──┤ X ├──■────■──┤ X ├──■────■──
          └─┬─┘┌─┴─┐┌─┴─┐└─┬─┘     ┌─┴─┐
q_2: ───────■──┤ X ├┤ X ├──■───────┤ X ├
               └───┘└───┘          └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_7e_1

qiskit.circuit.library.templates.nct.template_nct_7e_1()

GitHub

Template 7e_1:

     ┌───┐                    ┌───┐
q_0: ┤ X ├──■─────────■────■──┤ X ├──■──
     └───┘┌─┴─┐       │  ┌─┴─┐└───┘  │
q_1: ─────┤ X ├───────┼──┤ X ├───────┼──
          └─┬─┘┌───┐┌─┴─┐└─┬─┘     ┌─┴─┐
q_2: ───────■──┤ X ├┤ X ├──■───────┤ X ├
               └───┘└───┘          └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9a_1

qiskit.circuit.library.templates.nct.template_nct_9a_1()

GitHub

Template 9a_1:

     ┌───┐     ┌───┐          ┌───┐
q_0: ┤ X ├──■──┤ X ├──■────■──┤ X ├──■──
     └─┬─┘┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐
q_1: ──■──┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├
          └─┬─┘  │  ├───┤└─┬─┘┌───┐└─┬─┘
q_2: ───────■────■──┤ X ├──■──┤ X ├──■──
                    └───┘     └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9c_1

qiskit.circuit.library.templates.nct.template_nct_9c_1()

GitHub

Template 9c_1:

     ┌───┐     ┌───┐┌───┐     ┌───┐          ┌───┐
q_0: ┤ X ├──■──┤ X ├┤ X ├─────┤ X ├──■───────┤ X ├
     └─┬─┘┌─┴─┐└───┘└─┬─┘┌───┐└─┬─┘┌─┴─┐┌───┐└─┬─┘
q_1: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
          └───┘          └───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9c_2

qiskit.circuit.library.templates.nct.template_nct_9c_2()

GitHub

Template 9c_2:

q_0: ───────■────■──────────────■────■─────────■──
     ┌───┐  │  ┌─┴─┐┌───┐     ┌─┴─┐  │       ┌─┴─┐
q_1: ┤ X ├──■──┤ X ├┤ X ├─────┤ X ├──■───────┤ X ├
     └─┬─┘┌─┴─┐└───┘└─┬─┘┌───┐└─┬─┘┌─┴─┐┌───┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
          └───┘          └───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9c_3

qiskit.circuit.library.templates.nct.template_nct_9c_3()

GitHub

Template 9c_3:

q_0: ───────■────────────────────────■────────────
     ┌───┐  │  ┌───┐┌───┐     ┌───┐  │       ┌───┐
q_1: ┤ X ├──■──┤ X ├┤ X ├─────┤ X ├──■───────┤ X ├
     └─┬─┘┌─┴─┐└───┘└─┬─┘┌───┐└─┬─┘┌─┴─┐┌───┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
          └───┘          └───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9c_4

qiskit.circuit.library.templates.nct.template_nct_9c_4()

GitHub

Template 9c_4:

q_0: ──■────■─────────■──────────────■────────────
     ┌─┴─┐  │  ┌───┐┌─┴─┐     ┌───┐  │       ┌───┐
q_1: ┤ X ├──■──┤ X ├┤ X ├─────┤ X ├──■───────┤ X ├
     └─┬─┘┌─┴─┐└───┘└─┬─┘┌───┐└─┬─┘┌─┴─┐┌───┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
          └───┘          └───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9c_5

qiskit.circuit.library.templates.nct.template_nct_9c_5()

GitHub

Template 9c_5:

q_0: ────────────■─────────■──────────────■───────
     ┌───┐     ┌─┴─┐┌───┐  │  ┌───┐       │  ┌───┐
q_1: ┤ X ├──■──┤ X ├┤ X ├──┼──┤ X ├──■────┼──┤ X ├
     └─┬─┘┌─┴─┐└───┘└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
          └───┘          └───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9c_6

qiskit.circuit.library.templates.nct.template_nct_9c_6()

GitHub

Template 9c_6:

q_0: ───────■────■─────────■─────────■────■───────
     ┌───┐  │  ┌─┴─┐┌───┐  │  ┌───┐  │    │  ┌───┐
q_1: ┤ X ├──■──┤ X ├┤ X ├──┼──┤ X ├──■────┼──┤ X ├
     └─┬─┘┌─┴─┐└───┘└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
          └───┘          └───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9c_7

qiskit.circuit.library.templates.nct.template_nct_9c_7()

GitHub

Template 9c_7:

q_0: ──■────■────■────■────■─────────■────■───────
     ┌─┴─┐  │  ┌─┴─┐┌─┴─┐  │  ┌───┐  │    │  ┌───┐
q_1: ┤ X ├──■──┤ X ├┤ X ├──┼──┤ X ├──■────┼──┤ X ├
     └─┬─┘┌─┴─┐└───┘└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
          └───┘          └───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9c_8

qiskit.circuit.library.templates.nct.template_nct_9c_8()

GitHub

Template 9c_8:

q_0: ──■─────────■────■─────────■──────────────■──
     ┌─┴─┐     ┌─┴─┐┌─┴─┐     ┌─┴─┐          ┌─┴─┐
q_1: ┤ X ├──■──┤ X ├┤ X ├─────┤ X ├──■───────┤ X ├
     └─┬─┘┌─┴─┐└───┘└─┬─┘┌───┐└─┬─┘┌─┴─┐┌───┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
          └───┘          └───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9c_9

qiskit.circuit.library.templates.nct.template_nct_9c_9()

GitHub

Template 9c_9:

q_0: ──■────■────■────■─────────■────■─────────■──
     ┌─┴─┐  │  ┌─┴─┐┌─┴─┐     ┌─┴─┐  │       ┌─┴─┐
q_1: ┤ X ├──■──┤ X ├┤ X ├─────┤ X ├──■───────┤ X ├
     └─┬─┘┌─┴─┐└───┘└─┬─┘┌───┐└─┬─┘┌─┴─┐┌───┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
          └───┘          └───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9c_10

qiskit.circuit.library.templates.nct.template_nct_9c_10()

GitHub

Template 9c_10:

q_0: ──■─────────■────■────■────■─────────■────■──
     ┌─┴─┐     ┌─┴─┐┌─┴─┐  │  ┌─┴─┐       │  ┌─┴─┐
q_1: ┤ X ├──■──┤ X ├┤ X ├──┼──┤ X ├──■────┼──┤ X ├
     └─┬─┘┌─┴─┐└───┘└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
          └───┘          └───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9c_11

qiskit.circuit.library.templates.nct.template_nct_9c_11()

GitHub

Template 9c_11:

q_0: ───────■────■─────────■────■────■────■────■──
     ┌───┐  │  ┌─┴─┐┌───┐  │  ┌─┴─┐  │    │  ┌─┴─┐
q_1: ┤ X ├──■──┤ X ├┤ X ├──┼──┤ X ├──■────┼──┤ X ├
     └─┬─┘┌─┴─┐└───┘└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
          └───┘          └───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9c_12

qiskit.circuit.library.templates.nct.template_nct_9c_12()

GitHub

Template 9c_12:

q_0: ──■────■────■────■────■────■────■────■────■──
     ┌─┴─┐  │  ┌─┴─┐┌─┴─┐  │  ┌─┴─┐  │    │  ┌─┴─┐
q_1: ┤ X ├──■──┤ X ├┤ X ├──┼──┤ X ├──■────┼──┤ X ├
     └─┬─┘┌─┴─┐└───┘└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
          └───┘          └───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9d_1

qiskit.circuit.library.templates.nct.template_nct_9d_1()

GitHub

Template 9d_1:

               ┌───┐          ┌───┐          ┌───┐
q_0: ──■───────┤ X ├───────■──┤ X ├───────■──┤ X ├
     ┌─┴─┐┌───┐└─┬─┘┌───┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘
q_1: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
     └───┘└───┘     └───┘└───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9d_2

qiskit.circuit.library.templates.nct.template_nct_9d_2()

GitHub

Template 9d_2:

q_0: ──■────■────■──────────────■──────────────■──
       │    │  ┌─┴─┐          ┌─┴─┐          ┌─┴─┐
q_1: ──■────┼──┤ X ├───────■──┤ X ├───────■──┤ X ├
     ┌─┴─┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
     └───┘└───┘     └───┘└───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9d_3

qiskit.circuit.library.templates.nct.template_nct_9d_3()

GitHub

Template 9d_3:

q_0: ──■────■───────────────────■─────────────────
       │    │  ┌───┐          ┌─┴─┐          ┌───┐
q_1: ──■────┼──┤ X ├───────■──┤ X ├───────■──┤ X ├
     ┌─┴─┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
     └───┘└───┘     └───┘└───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9d_4

qiskit.circuit.library.templates.nct.template_nct_9d_4()

GitHub

Template 9d_4:

q_0: ───────■─────────■──────────────■────────────
            │  ┌───┐  │       ┌───┐  │       ┌───┐
q_1: ──■────┼──┤ X ├──┼────■──┤ X ├──┼────■──┤ X ├
     ┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
     └───┘└───┘     └───┘└───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9d_5

qiskit.circuit.library.templates.nct.template_nct_9d_5()

GitHub

Template 9d_5:

q_0: ──■────■─────────■─────────■────■────────────
       │    │  ┌───┐  │       ┌─┴─┐  │       ┌───┐
q_1: ──■────┼──┤ X ├──┼────■──┤ X ├──┼────■──┤ X ├
     ┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
     └───┘└───┘     └───┘└───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9d_6

qiskit.circuit.library.templates.nct.template_nct_9d_6()

GitHub

Template 9d_6:

q_0: ──■────■──────────────■────■─────────■───────
       │    │  ┌───┐       │  ┌─┴─┐       │  ┌───┐
q_1: ──■────┼──┤ X ├───────■──┤ X ├───────■──┤ X ├
     ┌─┴─┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
     └───┘└───┘     └───┘└───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9d_7

qiskit.circuit.library.templates.nct.template_nct_9d_7()

GitHub

Template 9d_7:

q_0: ──■────■─────────■────■────■────■────■───────
       │    │  ┌───┐  │    │  ┌─┴─┐  │    │  ┌───┐
q_1: ──■────┼──┤ X ├──┼────■──┤ X ├──┼────■──┤ X ├
     ┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
     └───┘└───┘     └───┘└───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9d_8

qiskit.circuit.library.templates.nct.template_nct_9d_8()

GitHub

Template 9d_8:

q_0: ──■────■────■────■─────────■────■─────────■──
       │    │  ┌─┴─┐  │       ┌─┴─┐  │       ┌─┴─┐
q_1: ──■────┼──┤ X ├──┼────■──┤ X ├──┼────■──┤ X ├
     ┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
     └───┘└───┘     └───┘└───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9d_9

qiskit.circuit.library.templates.nct.template_nct_9d_9()

GitHub

Template 9d_9:

q_0: ──■────■────■─────────■────■─────────■────■──
       │    │  ┌─┴─┐       │  ┌─┴─┐       │  ┌─┴─┐
q_1: ──■────┼──┤ X ├───────■──┤ X ├───────■──┤ X ├
     ┌─┴─┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
     └───┘└───┘     └───┘└───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

template_nct_9d_10

qiskit.circuit.library.templates.nct.template_nct_9d_10()

GitHub

Template 9d_10:

q_0: ──■────■────■────■────■────■────■────■────■──
       │    │  ┌─┴─┐  │    │  ┌─┴─┐  │    │  ┌─┴─┐
q_1: ──■────┼──┤ X ├──┼────■──┤ X ├──┼────■──┤ X ├
     ┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
     └───┘└───┘     └───┘└───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

Clifford template circuits

Template circuits over Clifford gates.

clifford_2_1

qiskit.circuit.library.clifford_2_1()

GitHub

Clifford template 2_1:

q_0: ─■──■─
      │  │
q_1: ─■──■─

Returns

template as a quantum circuit.

Return type

QuantumCircuit

clifford_2_2

qiskit.circuit.library.clifford_2_2()

GitHub

Clifford template 2_2:

q_0: ──■────■──
     ┌─┴─┐┌─┴─┐
q_1: ┤ X ├┤ X ├
     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

clifford_2_3

qiskit.circuit.library.clifford_2_3()

GitHub

Clifford template 2_3:

     ┌───┐┌───┐
q_0: ┤ H ├┤ H ├
     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

clifford_2_4

qiskit.circuit.library.clifford_2_4()

GitHub

Clifford template 2_4:

q_0: ─X──X─
      │  │
q_1: ─X──X─

Returns

template as a quantum circuit.

Return type

QuantumCircuit

clifford_3_1

qiskit.circuit.library.clifford_3_1()

GitHub

Clifford template 3_1:

     ┌───┐┌───┐┌───┐
q_0: ┤ S ├┤ S ├┤ Z ├
     └───┘└───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

clifford_4_1

qiskit.circuit.library.clifford_4_1()

GitHub

Clifford template 4_1:

          ┌───┐
q_0: ──■──┤ X ├──■───X─
     ┌─┴─┐└─┬─┘┌─┴─┐ │
q_1: ┤ X ├──■──┤ X ├─X─
     └───┘     └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

clifford_4_2

qiskit.circuit.library.clifford_4_2()

GitHub

Clifford template 4_2:

q_0: ───────■────────■─
     ┌───┐┌─┴─┐┌───┐ │
q_1: ┤ H ├┤ X ├┤ H ├─■─
     └───┘└───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

clifford_4_3

qiskit.circuit.library.clifford_4_3()

GitHub

Clifford template 4_3:

     ┌───┐     ┌─────┐
q_0: ┤ S ├──■──┤ SDG ├──■──
     └───┘┌─┴─┐└─────┘┌─┴─┐
q_1: ─────┤ X ├───────┤ X ├
          └───┘       └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

clifford_4_4

qiskit.circuit.library.clifford_4_4()

GitHub

Clifford template 4_4:

     ┌───┐   ┌─────┐
q_0: ┤ S ├─■─┤ SDG ├─■─
     └───┘ │ └─────┘ │
q_1: ──────■─────────■─

Returns

template as a quantum circuit.

Return type

QuantumCircuit

clifford_5_1

qiskit.circuit.library.clifford_5_1()

GitHub

Clifford template 5_1:

q_0: ──■─────────■─────────■──
     ┌─┴─┐     ┌─┴─┐       │
q_1: ┤ X ├──■──┤ X ├──■────┼──
     └───┘┌─┴─┐└───┘┌─┴─┐┌─┴─┐
q_2: ─────┤ X ├─────┤ X ├┤ X ├
          └───┘     └───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

clifford_6_1

qiskit.circuit.library.clifford_6_1()

GitHub

Clifford template 6_1:

     ┌───┐     ┌───┐┌───┐
q_0: ┤ H ├──■──┤ H ├┤ X ├
     ├───┤┌─┴─┐├───┤└─┬─┘
q_1: ┤ H ├┤ X ├┤ H ├──■──
     └───┘└───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

clifford_6_2

qiskit.circuit.library.clifford_6_2()

GitHub

Clifford template 6_2:

     ┌───┐
q_0: ┤ S ├──■───────────■───■─
     ├───┤┌─┴─┐┌─────┐┌─┴─┐ │
q_1: ┤ S ├┤ X ├┤ SDG ├┤ X ├─■─
     └───┘└───┘└─────┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

clifford_6_3

qiskit.circuit.library.clifford_6_3()

GitHub

Clifford template 6_3:

           ┌───┐     ┌───┐
q_0: ─X──■─┤ H ├──■──┤ X ├─────
      │  │ └───┘┌─┴─┐└─┬─┘┌───┐
q_1: ─X──■──────┤ X ├──■──┤ H ├
                └───┘     └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

clifford_6_4

qiskit.circuit.library.clifford_6_4()

GitHub

Clifford template 6_4:

     ┌───┐┌───┐┌───┐┌───┐┌───┐┌───┐
q_0: ┤ S ├┤ H ├┤ S ├┤ H ├┤ S ├┤ H ├
     └───┘└───┘└───┘└───┘└───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

clifford_6_5

qiskit.circuit.library.clifford_6_5()

GitHub

Clifford template 6_5:

              ┌───┐
q_0: ─■───■───┤ S ├───■───────
      │ ┌─┴─┐┌┴───┴┐┌─┴─┐┌───┐
q_1: ─■─┤ X ├┤ SDG ├┤ X ├┤ S ├
        └───┘└─────┘└───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

clifford_8_1

qiskit.circuit.library.clifford_8_1()

GitHub

Clifford template 8_1:

               ┌───┐ ┌───┐ ┌───┐┌─────┐
q_0: ──■───────┤ X ├─┤ S ├─┤ X ├┤ SDG ├
     ┌─┴─┐┌───┐└─┬─┘┌┴───┴┐└─┬─┘└┬───┬┘
q_1: ┤ X ├┤ H ├──■──┤ SDG ├──■───┤ H ├─
     └───┘└───┘     └─────┘      └───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

clifford_8_2

qiskit.circuit.library.clifford_8_2()

GitHub

Clifford template 8_2:

                     ┌───┐
q_0: ──■─────────■───┤ S ├───■────────────
     ┌─┴─┐┌───┐┌─┴─┐┌┴───┴┐┌─┴─┐┌───┐┌───┐
q_1: ┤ X ├┤ H ├┤ X ├┤ SDG ├┤ X ├┤ S ├┤ H ├
     └───┘└───┘└───┘└─────┘└───┘└───┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

clifford_8_3

qiskit.circuit.library.clifford_8_3()

GitHub

Clifford template 8_3:

q_0: ─────────────────■───────────────────────■──
     ┌───┐┌───┐┌───┐┌─┴─┐┌─────┐┌───┐┌─────┐┌─┴─┐
q_1: ┤ S ├┤ H ├┤ S ├┤ X ├┤ SDG ├┤ H ├┤ SDG ├┤ X ├
     └───┘└───┘└───┘└───┘└─────┘└───┘└─────┘└───┘

Returns

template as a quantum circuit.

Return type

QuantumCircuit

RZXGate template circuits

Template circuits with RZXGate.

rzx_yz

qiskit.circuit.library.rzx_yz(theta=None)

GitHub

RZX-based template for CX - RYGate - CX.

          ┌────────┐     ┌─────────┐┌─────────┐┌──────────┐
q_0: ──■──┤ RY(-ϴ) ├──■──┤ RX(π/2) ├┤0        ├┤ RX(-π/2) ├
     ┌─┴─┐└────────┘┌─┴─┐└─────────┘│  RZX(ϴ) │└──────────┘
q_1: ┤ X ├──────────┤ X ├───────────┤1        ├────────────
     └───┘          └───┘           └─────────┘

Parameters

theta (ParameterValueType | None) –

rzx_xz

qiskit.circuit.library.rzx_xz(theta=None)

GitHub

RZX-based template for CX - RXGate - CX.

     ┌───┐         ┌───┐┌─────────┐┌─────────┐┌─────────┐┌──────────┐»
q_0: ┤ X ├─────────┤ X ├┤ RZ(π/2) ├┤ RX(π/2) ├┤ RZ(π/2) ├┤0         ├»
     └─┬─┘┌───────┐└─┬─┘└─────────┘└─────────┘└─────────┘│  RZX(-ϴ) │»
q_1: ──■──┤ RX(ϴ) ├──■───────────────────────────────────┤1         ├»
          └───────┘                                      └──────────┘»
«     ┌─────────┐┌─────────┐┌─────────┐
«q_0: ┤ RZ(π/2) ├┤ RX(π/2) ├┤ RZ(π/2) ├
«     └─────────┘└─────────┘└─────────┘
«q_1: ─────────────────────────────────
«

Parameters

theta (ParameterValueType | None) –

rzx_cy

qiskit.circuit.library.rzx_cy(theta=None)

GitHub

RZX-based template for CX - RYGate - CX.

                                                       ┌──────────┐
q_0: ──■─────────────■─────────────────────────────────┤0         ├───────────
     ┌─┴─┐┌───────┐┌─┴─┐┌────────┐┌──────────┐┌───────┐│  RZX(-ϴ) │┌─────────┐
q_1: ┤ X ├┤ RY(ϴ) ├┤ X ├┤ RY(-ϴ) ├┤ RZ(-π/2) ├┤ RX(ϴ) ├┤1         ├┤ RZ(π/2) ├
     └───┘└───────┘└───┘└────────┘└──────────┘└───────┘└──────────┘└─────────┘

Parameters

theta (ParameterValueType | None) –

rzx_zz1

qiskit.circuit.library.rzx_zz1(theta=None)

GitHub

RZX-based template for CX - RZGate - CX.

                                                                            »
q_0: ──■────────────────────────────────────────────■───────────────────────»
     ┌─┴─┐┌───────┐┌────┐┌───────┐┌────┐┌────────┐┌─┴─┐┌────────┐┌─────────┐»
q_1: ┤ X ├┤ RZ(ϴ) ├┤ √X ├┤ RZ(π) ├┤ √X ├┤ RZ(3π) ├┤ X ├┤ RZ(-ϴ) ├┤ RZ(π/2) ├»
     └───┘└───────┘└────┘└───────┘└────┘└────────┘└───┘└────────┘└─────────┘»
«                                    ┌──────────┐                      »
«q_0: ───────────────────────────────┤0         ├──────────────────────»
«     ┌─────────┐┌─────────┐┌───────┐│  RZX(-ϴ) │┌─────────┐┌─────────┐»
«q_1: ┤ RX(π/2) ├┤ RZ(π/2) ├┤ RX(ϴ) ├┤1         ├┤ RZ(π/2) ├┤ RX(π/2) ├»
«     └─────────┘└─────────┘└───────┘└──────────┘└─────────┘└─────────┘»
«
«q_0: ───────────
«     ┌─────────┐
«q_1: ┤ RZ(π/2) ├
«     └─────────┘

Parameters

theta (ParameterValueType | None) –

rzx_zz2

qiskit.circuit.library.rzx_zz2(theta=None)

GitHub

RZX-based template for CX - PhaseGate - CX.

                                                                          »
q_0: ──■────────────■─────────────────────────────────────────────────────»
     ┌─┴─┐┌──────┐┌─┴─┐┌───────┐┌─────────┐┌─────────┐┌─────────┐┌───────┐»
q_1: ┤ X ├┤ P(ϴ) ├┤ X ├┤ P(-ϴ) ├┤ RZ(π/2) ├┤ RX(π/2) ├┤ RZ(π/2) ├┤ RX(ϴ) ├»
     └───┘└──────┘└───┘└───────┘└─────────┘└─────────┘└─────────┘└───────┘»
«     ┌──────────┐
«q_0: ┤0         ├─────────────────────────────────
«     │  RZX(-ϴ) │┌─────────┐┌─────────┐┌─────────┐
«q_1: ┤1         ├┤ RZ(π/2) ├┤ RX(π/2) ├┤ RZ(π/2) ├
«     └──────────┘└─────────┘└─────────┘└─────────┘

Parameters

theta (ParameterValueType | None) –

rzx_zz3

qiskit.circuit.library.rzx_zz3(theta=None)

GitHub

RZX-based template for CX - RZGate - CX.

                                                                            »
q_0: ──■─────────────■──────────────────────────────────────────────────────»
     ┌─┴─┐┌───────┐┌─┴─┐┌────────┐┌─────────┐┌─────────┐┌─────────┐┌───────┐»
q_1: ┤ X ├┤ RZ(ϴ) ├┤ X ├┤ RZ(-ϴ) ├┤ RZ(π/2) ├┤ RX(π/2) ├┤ RZ(π/2) ├┤ RX(ϴ) ├»
     └───┘└───────┘└───┘└────────┘└─────────┘└─────────┘└─────────┘└───────┘»
«     ┌──────────┐
«q_0: ┤0         ├─────────────────────────────────
«     │  RZX(-ϴ) │┌─────────┐┌─────────┐┌─────────┐
«q_1: ┤1         ├┤ RZ(π/2) ├┤ RX(π/2) ├┤ RZ(π/2) ├
«     └──────────┘└─────────┘└─────────┘└─────────┘

Parameters

theta (ParameterValueType | None) –

Was this page helpful?
Report a bug or request content on GitHub.