Circuit Library
qiskit.circuit.library
The circuit library is a collection of valuable circuits and building blocks. We call these valuable for different reasons. For instance, they can be used as building blocks for algorithms, serve as benchmarks, or they are circuits conjectured to be difficult to simulate classically.
Elements in the circuit library are either QuantumCircuit
s or Instruction
s, allowing them to be easily investigated or plugged into other circuits. This enables fast prototyping and circuit design at higher levels of abstraction.
For example:
from qiskit.circuit import QuantumCircuit
from qiskit.circuit.library import PauliEvolutionGate
from qiskit.quantum_info import SparsePauliOp
hamiltonian = SparsePauliOp(["ZZI", "IZZ", "IXI"], coeffs=[1, 1, -1])
gate = PauliEvolutionGate(hamiltonian)
circuit = QuantumCircuit(hamiltonian.num_qubits)
circuit.append(gate, circuit.qubits)
circuit.draw("mpl")

This library is organized in different sections:
We distinguish into different categories of operations:
Standard gates
These are fundamental quantum gates, a subset of which typically forms a basis gate set on a quantum computer. These are unitary operations represented as Gate
. The library also provides standard compiler directives (a Barrier
) and non-unitary operations (like Measure
).
Abstract operations
This category includes operations that are defined by a mathematical action, but can be implemented with different decompositions. For example, a multi-controlled XGate
flips the target qubit if all control qubits are , and there are a variety of concrete circuits implementing this operation using lower-level gates. Such abstract operations are represented as Gate
or Instruction
. This allows building the circuit without choosing a concrete implementation of each block and, finally, let the compiler (or you as user) choose the optimal decomposition. For example:
from qiskit.circuit.library import MCXGate
mcx = MCXGate(4)
from qiskit import QuantumCircuit
circuit = QuantumCircuit(5)
circuit.append(mcx, [0, 1, 4, 2, 3])
circuit.draw("mpl")

For circuits with abstract operations, the circuit context is taken into account during transpilation. For example, if idle qubits are available, they can be used to obtain a shallower circuit:
from qiskit import transpile
small_circuit = QuantumCircuit(5) # here we have no idle qubits
small_circuit.append(mcx, [0, 1, 4, 2, 3])
small_tqc = transpile(small_circuit, basis_gates=["u", "cx"])
print("No aux:", small_tqc.count_ops())
large_circuit = QuantumCircuit(10) # now we will have 5 idle qubits
large_circuit.append(mcx, [0, 1, 4, 2, 3])
large_tqc = transpile(large_circuit, basis_gates=["u", "cx"])
print("With aux:", large_tqc.count_ops())
Which prints:
No aux: OrderedDict([('u', 41), ('cx', 36)])
With aux: OrderedDict([('u', 24), ('cx', 18)])
Structural operations
These operations have a unique decomposition. As the compiler does not need to reason about them on a higher level, they are implemented as functions that return a QuantumCircuit
object. For example:
from qiskit.circuit.library import real_amplitudes
ansatz = real_amplitudes(5, entanglement="pairwise")
ansatz.draw("mpl")

Standard gates
These operations are reversible unitary gates and they all subclass Gate
. As a consequence, they all have the methods to_matrix()
, power()
, and control()
, which we can generally only apply to unitary operations.
For example:
from qiskit.circuit.library import XGate
gate = XGate()
print(gate.to_matrix()) # X gate
print(gate.power(1/2).to_matrix()) # √X gate -- see also the SXGate
print(gate.control(1).to_matrix()) # CX (controlled X) gate
[[0.+0.j 1.+0.j]
[1.+0.j 0.+0.j]]
[[0.5+0.5j 0.5-0.5j]
[0.5-0.5j 0.5+0.5j]]
[[1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j 1.+0.j]
[0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[0.+0.j 1.+0.j 0.+0.j 0.+0.j]]
The function get_standard_gate_name_mapping()
allows you to see the available standard gates and operations.
get_standard_gate_name_mapping
qiskit.circuit.library.get_standard_gate_name_mapping()
Return a dictionary mapping the name of standard gates and instructions to an object for that name.
Examples
from qiskit.circuit.library import get_standard_gate_name_mapping
gate_name_map = get_standard_gate_name_mapping()
cx_object = gate_name_map["cx"]
print(cx_object)
print(type(cx_object))
Instruction(name='cx', num_qubits=2, num_clbits=0, params=[])
_SingletonCXGate
1-qubit standard gates
HGate (*args[, _force_mutable]) | Single-qubit Hadamard gate. |
IGate (*args[, _force_mutable]) | Identity gate. |
PhaseGate (theta[, label]) | Single-qubit rotation about the Z axis. |
RGate (theta, phi[, label]) | Rotation θ around the cos(φ)x + sin(φ)y axis. |
RXGate (theta[, label]) | Single-qubit rotation about the X axis. |
RYGate (theta[, label]) | Single-qubit rotation about the Y axis. |
RZGate (phi[, label]) | Single-qubit rotation about the Z axis. |
SGate (*args[, _force_mutable]) | Single qubit S gate (Z**0.5). |
SdgGate (*args[, _force_mutable]) | Single qubit S-adjoint gate (~Z**0.5). |
SXGate (*args[, _force_mutable]) | The single-qubit Sqrt(X) gate (). |
SXdgGate (*args[, _force_mutable]) | The inverse single-qubit Sqrt(X) gate. |
TGate (*args[, _force_mutable]) | Single qubit T gate (Z**0.25). |
TdgGate (*args[, _force_mutable]) | Single qubit T-adjoint gate (~Z**0.25). |
UGate (theta, phi, lam[, label]) | Generic single-qubit rotation gate with 3 Euler angles. |
U1Gate (theta[, label]) | Single-qubit rotation about the Z axis. |
U2Gate (phi, lam[, label]) | Single-qubit rotation about the X+Z axis. |
U3Gate (theta, phi, lam[, label]) | Generic single-qubit rotation gate with 3 Euler angles. |
XGate (*args[, _force_mutable]) | The single-qubit Pauli-X gate (). |
YGate (*args[, _force_mutable]) | The single-qubit Pauli-Y gate (). |
ZGate (*args[, _force_mutable]) | The single-qubit Pauli-Z gate (). |
2-qubit standard gates
CHGate (*args[, _force_mutable]) | Controlled-Hadamard gate. |
CPhaseGate (theta[, label, ctrl_state, ...]) | Controlled-Phase gate. |
CRXGate (theta[, label, ctrl_state, _base_label]) | Controlled-RX gate. |
CRYGate (theta[, label, ctrl_state, _base_label]) | Controlled-RY gate. |
CRZGate (theta[, label, ctrl_state, _base_label]) | Controlled-RZ gate. |
CSGate (*args[, _force_mutable]) | Controlled-S gate. |
CSdgGate (*args[, _force_mutable]) | Controlled-S^dagger gate. |
CSXGate (*args[, _force_mutable]) | Controlled-√X gate. |
CUGate (theta, phi, lam, gamma[, label, ...]) | Controlled-U gate (4-parameter two-qubit gate). |
CU1Gate (theta[, label, ctrl_state, _base_label]) | Controlled-U1 gate. |
CU3Gate (theta, phi, lam[, label, ...]) | Controlled-U3 gate (3-parameter two-qubit gate). |
CXGate (*args[, _force_mutable]) | Controlled-X gate. |
CYGate (*args[, _force_mutable]) | Controlled-Y gate. |
CZGate (*args[, _force_mutable]) | Controlled-Z gate. |
DCXGate (*args[, _force_mutable]) | Double-CNOT gate. |
ECRGate (*args[, _force_mutable]) | An echoed cross-resonance gate. |
iSwapGate (*args[, _force_mutable]) | iSWAP gate. |
RXXGate (theta[, label]) | A parametric 2-qubit interaction (rotation about XX). |
RYYGate (theta[, label]) | A parametric 2-qubit interaction (rotation about YY). |
RZXGate (theta[, label]) | A parametric 2-qubit interaction (rotation about ZX). |
RZZGate (theta[, label]) | A parametric 2-qubit interaction (rotation about ZZ). |
SwapGate (*args[, _force_mutable]) | The SWAP gate. |
XXMinusYYGate (theta[, beta, label]) | XX-YY interaction gate. |
XXPlusYYGate (theta[, beta, label]) | XX+YY interaction gate. |
3+ qubit standard gates
C3SXGate (*args[, _force_mutable]) | The 3-qubit controlled sqrt-X gate. |
C3XGate (*args[, _force_mutable]) | The X gate controlled on 3 qubits. |
C4XGate (*args[, _force_mutable]) | The 4-qubit controlled X gate. |
CCXGate (*args[, _force_mutable]) | CCX gate, also known as Toffoli gate. |
CCZGate (*args[, _force_mutable]) | CCZ gate. |
CSwapGate (*args[, _force_mutable]) | Controlled-SWAP gate, also known as the Fredkin gate. |
RCCXGate (*args[, _force_mutable]) | The simplified Toffoli gate, also referred to as Margolus gate. |
RC3XGate (*args[, _force_mutable]) | The simplified 3-controlled Toffoli gate. |
Global standard gates
The following gate is global and does not take any qubit arguments.
GlobalPhaseGate (phase[, label]) | The global phase gate (). |
Standard Directives
Directives are operations to the quantum stack that are meant to be interpreted by the backend or the transpiler. In general, the transpiler or backend might optionally ignore them if there is no implementation for them.
Standard Operations
Operations are non-reversible changes in the quantum state of the circuit.
Generalized Gates
This module extends the standard gates with a broader collection of basic gates. This includes gates that are variadic, meaning that the number of qubits depends on the input. For example:
from qiskit.circuit.library import DiagonalGate
diagonal = DiagonalGate([1, 1j])
print(diagonal.num_qubits)
diagonal = DiagonalGate([1, 1, 1, -1])
print(diagonal.num_qubits)
which prints:
1
2
DiagonalGate (diag) | A generic diagonal quantum gate. |
PermutationGate (pattern) | A gate that permutes qubits. |
MCMTGate (gate, num_ctrl_qubits, ...[, ...]) | The multi-controlled multi-target gate, for an arbitrary singly controlled target gate. |
MCPhaseGate (lam, num_ctrl_qubits[, label, ...]) | Multi-controlled-Phase gate. |
MCXGate ([num_ctrl_qubits, label, ...]) | The general, multi-controlled X gate. |
MSGate (num_qubits, theta[, label]) | The Mølmer–Sørensen gate. |
RVGate (v_x, v_y, v_z[, basis]) | Rotation around arbitrary rotation axis where is angle of rotation in radians. |
PauliGate (label) | A multi-qubit Pauli gate. |
LinearFunction (linear[, validate_input]) | A linear reversible circuit on n qubits. |
Isometry (isometry, num_ancillas_zero, ...[, ...]) | Decomposition of arbitrary isometries from to qubits. |
UnitaryGate (data[, label, check_input, ...]) | Class quantum gates specified by a unitary matrix. |
UCGate (gate_list[, up_to_diagonal, mux_simp]) | Uniformly controlled gate (also called multiplexed gate). |
UCPauliRotGate (angle_list, rot_axis) | Uniformly controlled Pauli rotations. |
UCRXGate (angle_list) | Uniformly controlled Pauli-X rotations. |
UCRYGate (angle_list) | Uniformly controlled Pauli-Y rotations. |
UCRZGate (angle_list) | Uniformly controlled Pauli-Z rotations. |
The above objects derive Gate
or Instruction
, which allows the compiler to reason about them on an abstract level. We therefore suggest using these instead of the following, which derive QuantumCircuit
and are eagerly constructed.
Diagonal (diag) | Circuit implementing a diagonal transformation. |
MCMT (gate, num_ctrl_qubits, num_target_qubits) | The multi-controlled multi-target gate, for an arbitrary singly controlled target gate. |
MCMTVChain (gate, num_ctrl_qubits, ...) | The MCMT implementation using the CCX V-chain. |
MCXGrayCode ([num_ctrl_qubits, label, ...]) | Implement the multi-controlled X gate using the Gray code. |
MCXRecursive ([num_ctrl_qubits, label, ...]) | Implement the multi-controlled X gate using recursion. |
MCXVChain ([num_ctrl_qubits, dirty_ancillas, ...]) | Implement the multi-controlled X gate using a V-chain of CX gates. |
Permutation (num_qubits[, pattern, seed]) | An n_qubit circuit that permutes qubits. |
GMS (num_qubits, theta) | Global Mølmer–Sørensen gate. |
GR (num_qubits, theta, phi) | Global R gate. |
GRX (num_qubits, theta) | Global RX gate. |
GRY (num_qubits, theta) | Global RY gate. |
GRZ (num_qubits, phi) | Global RZ gate. |
Boolean Logic
These Gate
s implement boolean logic operations, such as the logical or
of a set of qubit states.
AndGate (num_variable_qubits[, flags]) | A gate representing the logical AND operation on a number of qubits. |
OrGate (num_variable_qubits[, flags]) | A gate representing the logical OR operation on a number of qubits. |
BitwiseXorGate (num_qubits, amount) | An n-qubit gate for bitwise xor-ing the input with some integer amount . |
InnerProductGate (num_qubits) | A 2n-qubit Boolean function that computes the inner product of two n-qubit vectors over . |
The above objects derive Gate
(or return this type), which allows the compiler to reason about them on an abstract level. We therefore suggest using these instead of the following which derive QuantumCircuit
and are eagerly constructed.
AND (num_variable_qubits[, flags, mcx_mode]) | A circuit implementing the logical AND operation on a number of qubits. |
OR (num_variable_qubits[, flags, mcx_mode]) | A circuit implementing the logical OR operation on a number of qubits. |
XOR (num_qubits[, amount, seed]) | An n_qubit circuit for bitwise xor-ing the input with some integer amount . |
InnerProduct (num_qubits) | A 2n-qubit Boolean function that computes the inner product of two n-qubit vectors over . |
A random bitwise xor
circuit can be directly generated using:
random_bitwise_xor (num_qubits, seed) | Create a random BitwiseXorGate. |
Basis Change
These gates perform basis transformations of the qubit states. For example, in the case of the Quantum Fourier Transform (QFT), it transforms between the computational basis and the Fourier basis.
QFTGate (num_qubits) | Quantum Fourier Transform Gate. |
The above object derives Gate
, which allows the compiler to reason about it on an abstract level. We therefore suggest using this instead of the following which derives QuantumCircuit
and is eagerly constructed.
QFT ([num_qubits, approximation_degree, ...]) | Quantum Fourier Transform Circuit. |
Arithmetic
These gates and circuits perform classical arithmetic, such as addition or multiplication.
Adders
Adders compute the sum of two -qubit registers, that is
where the size of the output register depends on the type of adder used.
ModularAdderGate (num_state_qubits[, label]) | Compute the sum modulo of two -sized qubit registers. |
HalfAdderGate (num_state_qubits[, label]) | Compute the sum of two equally-sized qubit registers, including a carry-out bit. |
FullAdderGate (num_state_qubits[, label]) | Compute the sum of two -sized qubit registers, including carry-in and -out bits. |
The above objects derive Gate
, which allows the compiler to reason about them on an abstract level. We therefore suggest using these instead of the following which derive QuantumCircuit
and are eagerly constructed.
DraperQFTAdder (num_state_qubits[, kind, name]) | A circuit that uses QFT to perform in-place addition on two qubit registers. |
CDKMRippleCarryAdder (num_state_qubits[, ...]) | A ripple-carry circuit to perform in-place addition on two qubit registers. |
VBERippleCarryAdder (num_state_qubits[, ...]) | The VBE ripple carry adder [1]. |
Multipliers
Multipliers compute the product of two -qubit registers, that is
where is the number of bits used to represent the result.
MultiplierGate (num_state_qubits[, ...]) | Compute the product of two equally sized qubit registers into a new register. |
The above object derives Gate
, which allows the compiler to reason about it on an abstract level. We therefore suggest using this instead of the following which derive QuantumCircuit
and are eagerly constructed.
HRSCumulativeMultiplier (num_state_qubits[, ...]) | A multiplication circuit to store product of two input registers out-of-place. |
RGQFTMultiplier (num_state_qubits[, ...]) | A QFT multiplication circuit to store product of two input registers out-of-place. |
Amplitude Functions
An amplitude function approximates a function applied on the amplitudes of qubits. See the class docstring for more detailed information.
LinearAmplitudeFunctionGate (...[, ...]) | A circuit implementing a (piecewise) linear function on qubit amplitudes. |
The above object derives Gate
, which allows the compiler to reason about it on an abstract level. We therefore suggest using this instead of the following which derives QuantumCircuit
and is eagerly constructed.
LinearAmplitudeFunction (num_state_qubits, ...) | A circuit implementing a (piecewise) linear function on qubit amplitudes. |
Functional Pauli Rotations
Functional Pauli rotations implement operations of the form
using Pauli- rotations for different types of functions , such as linear, polynomial, or a piecewise version of these. They are similar to the amplitude functions above, but without pre- and post-processing for the domain and image of the target function.
LinearPauliRotationsGate (num_state_qubits[, ...]) | Linearly-controlled X, Y or Z rotation. |
PolynomialPauliRotationsGate (num_state_qubits) | A gate implementing polynomial Pauli rotations. |
PiecewiseLinearPauliRotationsGate ([...]) | Piecewise-linearly-controlled Pauli rotations. |
PiecewisePolynomialPauliRotationsGate (...[, ...]) | Piecewise-polynomially-controlled Pauli rotations. |
PiecewiseChebyshevGate (f_x, num_state_qubits) | Piecewise Chebyshev approximation to an input function. |
The above objects derive Gate
, which allows the compiler to reason about them on an abstract level. We therefore suggest using these instead of the following which derive QuantumCircuit
and are eagerly constructed.
FunctionalPauliRotations ([num_state_qubits, ...]) | Base class for functional Pauli rotations. |
LinearPauliRotations ([num_state_qubits, ...]) | Linearly-controlled X, Y or Z rotation. |
PolynomialPauliRotations ([num_state_qubits, ...]) | A circuit implementing polynomial Pauli rotations. |
PiecewiseLinearPauliRotations ([...]) | Piecewise-linearly-controlled Pauli rotations. |
PiecewisePolynomialPauliRotations ([...]) | Piecewise-polynomially-controlled Pauli rotations. |
PiecewiseChebyshev (f_x[, degree, ...]) | Piecewise Chebyshev approximation to an input function. |
Other arithmetic functions
Here we list additional arithmetic circuits. See the individual class docstrings for more details.
ExactReciprocalGate (num_state_qubits, scaling) | Implements an exact reciprocal function. |
IntegerComparatorGate (num_state_qubits, value) | Perform a (or ) on a qubit register against a classical integer. |
QuadraticFormGate ([num_result_qubits, ...]) | Implements a quadratic form on binary variables encoded in qubit registers. |
WeightedSumGate (num_state_qubits[, weights, ...]) | A gate to compute the weighted sum of qubit registers. |
The above objects derive Gate
, which allows the compiler to reason about them on an abstract level. We therefore suggest using these instead of the following which derive QuantumCircuit
and are eagerly constructed.
ExactReciprocal (num_state_qubits, scaling[, ...]) | Exact reciprocal |
IntegerComparator ([num_state_qubits, value, ...]) | Integer Comparator. |
QuadraticForm ([num_result_qubits, ...]) | Implements a quadratic form on binary variables encoded in qubit registers. |
WeightedAdder ([num_state_qubits, weights, name]) | A circuit to compute the weighted sum of qubit registers. |
Particular Quantum Circuits
The following gates and quantum circuits define specific operations of interest:
fourier_checking (f, g) | Fourier checking circuit. |
hidden_linear_function (adjacency_matrix) | Circuit to solve the hidden linear function problem. |
iqp (interactions) | Instantaneous quantum polynomial time (IQP) circuit. |
random_iqp (num_qubits[, seed]) | A random instantaneous quantum polynomial time (IQP) circuit. |
quantum_volume (num_qubits[, depth, seed]) | A quantum volume model circuit. |
phase_estimation (num_evaluation_qubits, unitary) | Phase Estimation circuit. |
grover_operator (oracle[, state_preparation, ...]) | Construct the Grover operator. |
unitary_overlap (unitary1, unitary2[, ...]) | Circuit that returns the overlap between two unitaries . |
GraphStateGate (adjacency_matrix) | A gate representing a graph state. |
PauliEvolutionGate (operator[, time, label, ...]) | Time-evolution of an operator consisting of Paulis. |
HamiltonianGate (data, time[, label]) | Class for representing evolution by a Hamiltonian operator as a gate. |
Below we provide the same operations as classes deriving QuantumCircuit
. For better runtime and compiler performance, however, we suggest using above functions and gates.
FourierChecking (f, g) | Fourier checking circuit. |
GraphState (adjacency_matrix) | Circuit to prepare a graph state. |
HiddenLinearFunction (adjacency_matrix) | Circuit to solve the hidden linear function problem. |
IQP (interactions) | Instantaneous quantum polynomial (IQP) circuit. |
QuantumVolume (num_qubits[, depth, seed, ...]) | A quantum volume model circuit. |
PhaseEstimation (num_evaluation_qubits, unitary) | Phase Estimation circuit. |
GroverOperator (oracle[, state_preparation, ...]) | The Grover operator. |
UnitaryOverlap (unitary1, unitary2[, ...]) | Circuit that returns the overlap between two unitaries . |
N-local circuits
The following functions return a parameterized QuantumCircuit
to use as ansatz in a broad set of variational quantum algorithms.
For example, we can build a variational circuit

and combine it with
from qiskit.circuit.library import zz_feature_map
circuit = zz_feature_map(num_qubits)
circuit.barrier()
circuit.compose(ansatz, inplace=True)
circuit.draw("mpl")


to obtain a circuit for variational quantum classification.
The following functions all construct variational circuits and are optimized for a fast construction:
n_local (num_qubits, rotation_blocks, ...[, ...]) | Construct an n-local variational circuit. |
efficient_su2 (num_qubits[, su2_gates, ...]) | The hardware-efficient 2-local circuit. |
real_amplitudes (num_qubits[, entanglement, ...]) | Construct a real-amplitudes 2-local circuit. |
pauli_two_design (num_qubits[, reps, seed, ...]) | Construct a Pauli 2-design ansatz. |
excitation_preserving (num_qubits[, mode, ...]) | The heuristic excitation-preserving wave function ansatz. |
qaoa_ansatz (cost_operator[, reps, ...]) | A generalized QAOA quantum circuit with a support of custom initial states and mixers. |
hamiltonian_variational_ansatz (hamiltonian) | Construct a Hamiltonian variational ansatz. |
evolved_operator_ansatz (operators[, reps, ...]) | Construct an ansatz out of operator evolutions. |
While we suggest using the above functions, we also continue supporting the following BlueprintCircuit
, which wrap the circuits into a block and allow for inplace mutations of the circuits:
NLocal ([num_qubits, rotation_blocks, ...]) | The n-local circuit class. |
TwoLocal ([num_qubits, rotation_blocks, ...]) | The two-local circuit. |
PauliTwoDesign ([num_qubits, reps, seed, ...]) | The Pauli Two-Design ansatz. |
RealAmplitudes ([num_qubits, entanglement, ...]) | The real-amplitudes 2-local circuit. |
EfficientSU2 ([num_qubits, su2_gates, ...]) | The hardware efficient SU(2) 2-local circuit. |
EvolvedOperatorAnsatz ([operators, reps, ...]) | The evolved operator ansatz. |
ExcitationPreserving ([num_qubits, mode, ...]) | The heuristic excitation-preserving wave function ansatz. |
QAOAAnsatz ([cost_operator, reps, ...]) | A generalized QAOA quantum circuit with a support of custom initial states and mixers. |
Data encoding circuits
The following functions return a parameterized QuantumCircuit
to use as data encoding circuits in a series of variational quantum algorithms:
pauli_feature_map (feature_dimension[, reps, ...]) | The Pauli expansion circuit. |
z_feature_map (feature_dimension[, reps, ...]) | The first order Pauli Z-evolution circuit. |
zz_feature_map (feature_dimension[, reps, ...]) | Second-order Pauli-Z evolution circuit. |
While we suggest using the above functions, we also continue supporting the following BlueprintCircuit
, which wrap the circuits into a block and allow for inplace mutations of the circuits:
PauliFeatureMap ([feature_dimension, reps, ...]) | The Pauli Expansion circuit. |
ZFeatureMap (feature_dimension[, reps, ...]) | The first order Pauli Z-evolution circuit. |
ZZFeatureMap (feature_dimension[, reps, ...]) | Second-order Pauli-Z evolution circuit. |
Data preparation circuits
The following operations are used for state preparation:
StatePreparation (params[, num_qubits, ...]) | Complex amplitude state preparation. |
Initialize (params[, num_qubits, normalize]) | Complex amplitude initialization. |
Oracles
An “oracle” can refer to a variety of black-box operations on quantum states. Here, we consider oracles implementing boolean functions via phase-flips
or bit-flips
These are implemented in
PhaseOracleGate (expression[, var_order, label]) | Implements a phase oracle. |
BitFlipOracleGate (expression[, var_order, label]) | Implements a bit-flip oracle |
and an important building block for Grover’s algorithm (see grover_operator()
).
In addition to the Gate
-based implementation we also support the QuantumCircuit
-version of the phase flip oracle
PhaseOracle (expression[, var_order]) | Phase Oracle. |
Template circuits
Templates are functions that return circuits that compute the identity. They are used at circuit optimization where matching part of the template allows the compiler to replace the match with the inverse of the remainder from the template.
In this example, the identity constant in a template is checked:
from qiskit.circuit.library.templates import template_nct_4b_1
from qiskit.quantum_info import Operator
import numpy as np
template = template_nct_4b_1()
identity = np.identity(2 ** len(template.qubits), dtype=complex)
data = Operator(template).data
np.allclose(data, identity) # True, template_nct_4b_1 is the identity
NCT (Not-CNOT-Toffoli) template circuits
Template circuits for XGate
, CXGate
, and CCXGate
(Toffoli) gates.
Reference: Maslov, D. and Dueck, G. W. and Miller, D. M., Techniques for the synthesis of reversible Toffoli networks, 2007 http://dx.doi.org/10.1145/1278349.1278355
template_nct_2a_1
qiskit.circuit.library.templates.nct.template_nct_2a_1()
Template 2a_1:
┌───┐┌───┐
q_0: ┤ X ├┤ X ├
└───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_2a_2
qiskit.circuit.library.templates.nct.template_nct_2a_2()
Template 2a_2:
q_0: ──■────■──
┌─┴─┐┌─┴─┐
q_1: ┤ X ├┤ X ├
└───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_2a_3
qiskit.circuit.library.templates.nct.template_nct_2a_3()
Template 2a_3:
q_0: ──■────■──
│ │
q_1: ──■────■──
┌─┴─┐┌─┴─┐
q_2: ┤ X ├┤ X ├
└───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_4a_1
qiskit.circuit.library.templates.nct.template_nct_4a_1()
Template 4a_1:
q_0: ───────■─────────■──
│ │
q_1: ──■────┼────■────┼──
│ │ │ │
q_2: ──■────■────■────■──
│ ┌─┴─┐ │ ┌─┴─┐
q_3: ──┼──┤ X ├──┼──┤ X ├
┌─┴─┐└───┘┌─┴─┐└───┘
q_4: ┤ X ├─────┤ X ├─────
└───┘ └───┘
Returns
template as a quantum circuit.
Return type
template_nct_4a_2
qiskit.circuit.library.templates.nct.template_nct_4a_2()
Template 4a_2:
q_0: ──■─────────■───────
│ │
q_1: ──■────■────■────■──
│ ┌─┴─┐ │ ┌─┴─┐
q_2: ──┼──┤ X ├──┼──┤ X ├
┌─┴─┐└───┘┌─┴─┐└───┘
q_3: ┤ X ├─────┤ X ├─────
└───┘ └───┘
Returns
template as a quantum circuit.
Return type
template_nct_4a_3
qiskit.circuit.library.templates.nct.template_nct_4a_3()
Template 4a_3:
q_0: ──■────■────■────■──
│ ┌─┴─┐ │ ┌─┴─┐
q_1: ──┼──┤ X ├──┼──┤ X ├
┌─┴─┐└───┘┌─┴─┐└───┘
q_2: ┤ X ├─────┤ X ├─────
└───┘ └───┘
Returns
template as a quantum circuit.
Return type
template_nct_4b_1
qiskit.circuit.library.templates.nct.template_nct_4b_1()
Template 4b_1:
q_0: ───────■─────────■──
│ │
q_1: ──■────┼────■────┼──
│ │ │ │
q_2: ──■────■────■────■──
┌─┴─┐┌─┴─┐┌─┴─┐┌─┴─┐
q_3: ┤ X ├┤ X ├┤ X ├┤ X ├
└───┘└───┘└───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_4b_2
qiskit.circuit.library.templates.nct.template_nct_4b_2()
Template 4b_2:
q_0: ──■─────────■───────
│ │
q_1: ──■────■────■────■──
┌─┴─┐┌─┴─┐┌─┴─┐┌─┴─┐
q_2: ┤ X ├┤ X ├┤ X ├┤ X ├
└───┘└───┘└───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_5a_1
qiskit.circuit.library.templates.nct.template_nct_5a_1()
Template 5a_1:
q_0: ──■────■────■────■────■──
│ ┌─┴─┐ │ ┌─┴─┐ │
q_1: ──■──┤ X ├──■──┤ X ├──┼──
┌─┴─┐└───┘┌─┴─┐└───┘┌─┴─┐
q_2: ┤ X ├─────┤ X ├─────┤ X ├
└───┘ └───┘ └───┘
Returns
template as a quantum circuit.
Return type
template_nct_5a_2
qiskit.circuit.library.templates.nct.template_nct_5a_2()
Template 5a_2:
q_0: ──■─────────■─────────■──
│ ┌───┐ │ ┌───┐ │
q_1: ──■──┤ X ├──■──┤ X ├──┼──
┌─┴─┐└───┘┌─┴─┐└───┘┌─┴─┐
q_2: ┤ X ├─────┤ X ├─────┤ X ├
└───┘ └───┘ └───┘
Returns
template as a quantum circuit.
Return type
template_nct_5a_3
qiskit.circuit.library.templates.nct.template_nct_5a_3()
Template 5a_3:
q_0: ───────■─────────■────■──
┌─┴─┐ ┌─┴─┐ │
q_1: ──■──┤ X ├──■──┤ X ├──┼──
┌─┴─┐└───┘┌─┴─┐└───┘┌─┴─┐
q_2: ┤ X ├─────┤ X ├─────┤ X ├
└───┘ └───┘ └───┘
Returns
template as a quantum circuit.
Return type
template_nct_5a_4
qiskit.circuit.library.templates.nct.template_nct_5a_4()
Template 5a_4:
┌───┐ ┌───┐
q_0: ──■──┤ X ├──■──┤ X ├
┌─┴─┐└───┘┌─┴─┐├───┤
q_1: ┤ X ├─────┤ X ├┤ X ├
└───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_6a_1
qiskit.circuit.library.templates.nct.template_nct_6a_1()
Template 6a_1:
┌───┐ ┌───┐ ┌───┐
q_0: ──■──┤ X ├──■──┤ X ├──■──┤ X ├
┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘
q_1: ┤ X ├──■──┤ X ├──■──┤ X ├──■──
└───┘ └───┘ └───┘
Returns
template as a quantum circuit.
Return type
template_nct_6a_2
qiskit.circuit.library.templates.nct.template_nct_6a_2()
Template 6a_2:
q_0: ──■────■────■────■────■────■──
│ ┌─┴─┐ │ ┌─┴─┐ │ ┌─┴─┐
q_1: ──■──┤ X ├──■──┤ X ├──■──┤ X ├
┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘
q_2: ┤ X ├──■──┤ X ├──■──┤ X ├──■──
└───┘ └───┘ └───┘
Returns
template as a quantum circuit.
Return type
template_nct_6a_3
qiskit.circuit.library.templates.nct.template_nct_6a_3()
Template 6a_3:
q_0: ───────■─────────■────■────■──
┌─┴─┐ ┌─┴─┐ │ ┌─┴─┐
q_1: ──■──┤ X ├──■──┤ X ├──■──┤ X ├
┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘
q_2: ┤ X ├──■──┤ X ├──■──┤ X ├──■──
└───┘ └───┘ └───┘
Returns
template as a quantum circuit.
Return type
template_nct_6a_4
qiskit.circuit.library.templates.nct.template_nct_6a_4()
Template 6a_4:
q_0: ───────■──────────────■───────
┌─┴─┐ ┌───┐ │ ┌───┐
q_1: ──■──┤ X ├──■──┤ X ├──■──┤ X ├
┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘
q_2: ┤ X ├──■──┤ X ├──■──┤ X ├──■──
└───┘ └───┘ └───┘
Returns
template as a quantum circuit.
Return type
template_nct_6b_1
qiskit.circuit.library.templates.nct.template_nct_6b_1()
Template 6b_1:
q_0: ──■─────────■────■─────────■──
│ ┌─┴─┐ │ ┌─┴─┐
q_1: ──■────■──┤ X ├──■────■──┤ X ├
┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
└───┘└───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_6b_2
qiskit.circuit.library.templates.nct.template_nct_6b_2()
Template 6b_2:
q_0: ───────■────■─────────■────■──
│ ┌─┴─┐ │ ┌─┴─┐
q_1: ──■────■──┤ X ├──■────■──┤ X ├
┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
└───┘└───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_6c_1
qiskit.circuit.library.templates.nct.template_nct_6c_1()
Template 6c_1:
q_0: ──■─────────■─────────■────■──
│ ┌───┐ │ ┌───┐ │ ┌─┴─┐
q_1: ──■──┤ X ├──■──┤ X ├──■──┤ X ├
┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐└─┬─┘
q_2: ┤ X ├──■──┤ X ├──■──┤ X ├──■──
└───┘ └───┘ └───┘
Returns
template as a quantum circuit.
Return type
template_nct_7a_1
qiskit.circuit.library.templates.nct.template_nct_7a_1()
Template 7a_1:
┌───┐ ┌───┐
q_0: ┤ X ├──■─────────■────■──┤ X ├──■──
└─┬─┘┌─┴─┐ │ ┌─┴─┐└─┬─┘ │
q_1: ──■──┤ X ├──■────■──┤ X ├──■────■──
└───┘┌─┴─┐┌─┴─┐└───┘ ┌─┴─┐
q_2: ──────────┤ X ├┤ X ├──────────┤ X ├
└───┘└───┘ └───┘
Returns
template as a quantum circuit.
Return type
template_nct_7b_1
qiskit.circuit.library.templates.nct.template_nct_7b_1()
Template 7b_1:
┌───┐ ┌───┐
q_0: ┤ X ├──■─────────■────■──┤ X ├──■──
└───┘┌─┴─┐ │ ┌─┴─┐└───┘ │
q_1: ─────┤ X ├──■────■──┤ X ├───────■──
└───┘┌─┴─┐┌─┴─┐└───┘ ┌─┴─┐
q_2: ──────────┤ X ├┤ X ├──────────┤ X ├
└───┘└───┘ └───┘
Returns
template as a quantum circuit.
Return type
template_nct_7c_1
qiskit.circuit.library.templates.nct.template_nct_7c_1()
Template 7c_1:
┌───┐ ┌───┐
q_0: ┤ X ├──■─────────■────■──┤ X ├──■──
└───┘┌─┴─┐ │ ┌─┴─┐└───┘ │
q_1: ─────┤ X ├──■────■──┤ X ├───────■──
└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘ ┌─┴─┐
q_2: ───────■──┤ X ├┤ X ├──■───────┤ X ├
└───┘└───┘ └───┘
Returns
template as a quantum circuit.
Return type
template_nct_7d_1
qiskit.circuit.library.templates.nct.template_nct_7d_1()
Template 7d_1:
┌───┐ ┌───┐
q_0: ┤ X ├──■─────────■────■──┤ X ├──■──
└─┬─┘┌─┴─┐ │ ┌─┴─┐└─┬─┘ │
q_1: ──■──┤ X ├──■────■──┤ X ├──■────■──
└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘ ┌─┴─┐
q_2: ───────■──┤ X ├┤ X ├──■───────┤ X ├
└───┘└───┘ └───┘
Returns
template as a quantum circuit.
Return type
template_nct_7e_1
qiskit.circuit.library.templates.nct.template_nct_7e_1()
Template 7e_1:
┌───┐ ┌───┐
q_0: ┤ X ├──■─────────■────■──┤ X ├──■──
└───┘┌─┴─┐ │ ┌─┴─┐└───┘ │
q_1: ─────┤ X ├───────┼──┤ X ├───────┼──
└─┬─┘┌───┐┌─┴─┐└─┬─┘ ┌─┴─┐
q_2: ───────■──┤ X ├┤ X ├──■───────┤ X ├
└───┘└───┘ └───┘
Returns
template as a quantum circuit.
Return type
template_nct_9a_1
qiskit.circuit.library.templates.nct.template_nct_9a_1()
Template 9a_1:
┌───┐ ┌───┐ ┌───┐
q_0: ┤ X ├──■──┤ X ├──■────■──┤ X ├──■──
└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐
q_1: ──■──┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├
└─┬─┘ │ ├───┤└─┬─┘┌───┐└─┬─┘
q_2: ───────■────■──┤ X ├──■──┤ X ├──■──
└───┘ └───┘
Returns
template as a quantum circuit.
Return type
template_nct_9c_1
qiskit.circuit.library.templates.nct.template_nct_9c_1()
Template 9c_1:
┌───┐ ┌───┐┌───┐ ┌───┐ ┌───┐
q_0: ┤ X ├──■──┤ X ├┤ X ├─────┤ X ├──■───────┤ X ├
└─┬─┘┌─┴─┐└───┘└─┬─┘┌───┐└─┬─┘┌─┴─┐┌───┐└─┬─┘
q_1: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
└───┘ └───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9c_2
qiskit.circuit.library.templates.nct.template_nct_9c_2()
Template 9c_2:
q_0: ───────■────■──────────────■────■─────────■──
┌───┐ │ ┌─┴─┐┌───┐ ┌─┴─┐ │ ┌─┴─┐
q_1: ┤ X ├──■──┤ X ├┤ X ├─────┤ X ├──■───────┤ X ├
└─┬─┘┌─┴─┐└───┘└─┬─┘┌───┐└─┬─┘┌─┴─┐┌───┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
└───┘ └───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9c_3
qiskit.circuit.library.templates.nct.template_nct_9c_3()
Template 9c_3:
q_0: ───────■────────────────────────■────────────
┌───┐ │ ┌───┐┌───┐ ┌───┐ │ ┌───┐
q_1: ┤ X ├──■──┤ X ├┤ X ├─────┤ X ├──■───────┤ X ├
└─┬─┘┌─┴─┐└───┘└─┬─┘┌───┐└─┬─┘┌─┴─┐┌───┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
└───┘ └───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9c_4
qiskit.circuit.library.templates.nct.template_nct_9c_4()
Template 9c_4:
q_0: ──■────■─────────■──────────────■────────────
┌─┴─┐ │ ┌───┐┌─┴─┐ ┌───┐ │ ┌───┐
q_1: ┤ X ├──■──┤ X ├┤ X ├─────┤ X ├──■───────┤ X ├
└─┬─┘┌─┴─┐└───┘└─┬─┘┌───┐└─┬─┘┌─┴─┐┌───┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
└───┘ └───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9c_5
qiskit.circuit.library.templates.nct.template_nct_9c_5()
Template 9c_5:
q_0: ────────────■─────────■──────────────■───────
┌───┐ ┌─┴─┐┌───┐ │ ┌───┐ │ ┌───┐
q_1: ┤ X ├──■──┤ X ├┤ X ├──┼──┤ X ├──■────┼──┤ X ├
└─┬─┘┌─┴─┐└───┘└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
└───┘ └───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9c_6
qiskit.circuit.library.templates.nct.template_nct_9c_6()
Template 9c_6:
q_0: ───────■────■─────────■─────────■────■───────
┌───┐ │ ┌─┴─┐┌───┐ │ ┌───┐ │ │ ┌───┐
q_1: ┤ X ├──■──┤ X ├┤ X ├──┼──┤ X ├──■────┼──┤ X ├
└─┬─┘┌─┴─┐└───┘└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
└───┘ └───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9c_7
qiskit.circuit.library.templates.nct.template_nct_9c_7()
Template 9c_7:
q_0: ──■────■────■────■────■─────────■────■───────
┌─┴─┐ │ ┌─┴─┐┌─┴─┐ │ ┌───┐ │ │ ┌───┐
q_1: ┤ X ├──■──┤ X ├┤ X ├──┼──┤ X ├──■────┼──┤ X ├
└─┬─┘┌─┴─┐└───┘└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
└───┘ └───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9c_8
qiskit.circuit.library.templates.nct.template_nct_9c_8()
Template 9c_8:
q_0: ──■─────────■────■─────────■──────────────■──
┌─┴─┐ ┌─┴─┐┌─┴─┐ ┌─┴─┐ ┌─┴─┐
q_1: ┤ X ├──■──┤ X ├┤ X ├─────┤ X ├──■───────┤ X ├
└─┬─┘┌─┴─┐└───┘└─┬─┘┌───┐└─┬─┘┌─┴─┐┌───┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
└───┘ └───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9c_9
qiskit.circuit.library.templates.nct.template_nct_9c_9()
Template 9c_9:
q_0: ──■────■────■────■─────────■────■─────────■──
┌─┴─┐ │ ┌─┴─┐┌─┴─┐ ┌─┴─┐ │ ┌─┴─┐
q_1: ┤ X ├──■──┤ X ├┤ X ├─────┤ X ├──■───────┤ X ├
└─┬─┘┌─┴─┐└───┘└─┬─┘┌───┐└─┬─┘┌─┴─┐┌───┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
└───┘ └───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9c_10
qiskit.circuit.library.templates.nct.template_nct_9c_10()
Template 9c_10:
q_0: ──■─────────■────■────■────■─────────■────■──
┌─┴─┐ ┌─┴─┐┌─┴─┐ │ ┌─┴─┐ │ ┌─┴─┐
q_1: ┤ X ├──■──┤ X ├┤ X ├──┼──┤ X ├──■────┼──┤ X ├
└─┬─┘┌─┴─┐└───┘└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
└───┘ └───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9c_11
qiskit.circuit.library.templates.nct.template_nct_9c_11()
Template 9c_11:
q_0: ───────■────■─────────■────■────■────■────■──
┌───┐ │ ┌─┴─┐┌───┐ │ ┌─┴─┐ │ │ ┌─┴─┐
q_1: ┤ X ├──■──┤ X ├┤ X ├──┼──┤ X ├──■────┼──┤ X ├
└─┬─┘┌─┴─┐└───┘└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
└───┘ └───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9c_12
qiskit.circuit.library.templates.nct.template_nct_9c_12()
Template 9c_12:
q_0: ──■────■────■────■────■────■────■────■────■──
┌─┴─┐ │ ┌─┴─┐┌─┴─┐ │ ┌─┴─┐ │ │ ┌─┴─┐
q_1: ┤ X ├──■──┤ X ├┤ X ├──┼──┤ X ├──■────┼──┤ X ├
└─┬─┘┌─┴─┐└───┘└─┬─┘┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ──■──┤ X ├───────■──┤ X ├──■──┤ X ├┤ X ├──■──
└───┘ └───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9d_1
qiskit.circuit.library.templates.nct.template_nct_9d_1()
Template 9d_1:
┌───┐ ┌───┐ ┌───┐
q_0: ──■───────┤ X ├───────■──┤ X ├───────■──┤ X ├
┌─┴─┐┌───┐└─┬─┘┌───┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘
q_1: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
└───┘└───┘ └───┘└───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9d_2
qiskit.circuit.library.templates.nct.template_nct_9d_2()
Template 9d_2:
q_0: ──■────■────■──────────────■──────────────■──
│ │ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐
q_1: ──■────┼──┤ X ├───────■──┤ X ├───────■──┤ X ├
┌─┴─┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
└───┘└───┘ └───┘└───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9d_3
qiskit.circuit.library.templates.nct.template_nct_9d_3()
Template 9d_3:
q_0: ──■────■───────────────────■─────────────────
│ │ ┌───┐ ┌─┴─┐ ┌───┐
q_1: ──■────┼──┤ X ├───────■──┤ X ├───────■──┤ X ├
┌─┴─┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
└───┘└───┘ └───┘└───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9d_4
qiskit.circuit.library.templates.nct.template_nct_9d_4()
Template 9d_4:
q_0: ───────■─────────■──────────────■────────────
│ ┌───┐ │ ┌───┐ │ ┌───┐
q_1: ──■────┼──┤ X ├──┼────■──┤ X ├──┼────■──┤ X ├
┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
└───┘└───┘ └───┘└───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9d_5
qiskit.circuit.library.templates.nct.template_nct_9d_5()
Template 9d_5:
q_0: ──■────■─────────■─────────■────■────────────
│ │ ┌───┐ │ ┌─┴─┐ │ ┌───┐
q_1: ──■────┼──┤ X ├──┼────■──┤ X ├──┼────■──┤ X ├
┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
└───┘└───┘ └───┘└───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9d_6
qiskit.circuit.library.templates.nct.template_nct_9d_6()
Template 9d_6:
q_0: ──■────■──────────────■────■─────────■───────
│ │ ┌───┐ │ ┌─┴─┐ │ ┌───┐
q_1: ──■────┼──┤ X ├───────■──┤ X ├───────■──┤ X ├
┌─┴─┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
└───┘└───┘ └───┘└───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9d_7
qiskit.circuit.library.templates.nct.template_nct_9d_7()
Template 9d_7:
q_0: ──■────■─────────■────■────■────■────■───────
│ │ ┌───┐ │ │ ┌─┴─┐ │ │ ┌───┐
q_1: ──■────┼──┤ X ├──┼────■──┤ X ├──┼────■──┤ X ├
┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
└───┘└───┘ └───┘└───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9d_8
qiskit.circuit.library.templates.nct.template_nct_9d_8()
Template 9d_8:
q_0: ──■────■────■────■─────────■────■─────────■──
│ │ ┌─┴─┐ │ ┌─┴─┐ │ ┌─┴─┐
q_1: ──■────┼──┤ X ├──┼────■──┤ X ├──┼────■──┤ X ├
┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
└───┘└───┘ └───┘└───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9d_9
qiskit.circuit.library.templates.nct.template_nct_9d_9()
Template 9d_9:
q_0: ──■────■────■─────────■────■─────────■────■──
│ │ ┌─┴─┐ │ ┌─┴─┐ │ ┌─┴─┐
q_1: ──■────┼──┤ X ├───────■──┤ X ├───────■──┤ X ├
┌─┴─┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘┌───┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
└───┘└───┘ └───┘└───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
template_nct_9d_10
qiskit.circuit.library.templates.nct.template_nct_9d_10()
Template 9d_10:
q_0: ──■────■────■────■────■────■────■────■────■──
│ │ ┌─┴─┐ │ │ ┌─┴─┐ │ │ ┌─┴─┐
q_1: ──■────┼──┤ X ├──┼────■──┤ X ├──┼────■──┤ X ├
┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘┌─┴─┐┌─┴─┐└─┬─┘
q_2: ┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──┤ X ├┤ X ├──■──
└───┘└───┘ └───┘└───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
Clifford template circuits
Template circuits over Clifford gates.
clifford_2_1
qiskit.circuit.library.clifford_2_1()
Clifford template 2_1:
q_0: ─■──■─
│ │
q_1: ─■──■─
Returns
template as a quantum circuit.
Return type
clifford_2_2
qiskit.circuit.library.clifford_2_2()
Clifford template 2_2:
q_0: ──■────■──
┌─┴─┐┌─┴─┐
q_1: ┤ X ├┤ X ├
└───┘└───┘
Returns
template as a quantum circuit.
Return type
clifford_2_3
qiskit.circuit.library.clifford_2_3()
Clifford template 2_3:
┌───┐┌───┐
q_0: ┤ H ├┤ H ├
└───┘└───┘
Returns
template as a quantum circuit.
Return type
clifford_2_4
qiskit.circuit.library.clifford_2_4()
Clifford template 2_4:
q_0: ─X──X─
│ │
q_1: ─X──X─
Returns
template as a quantum circuit.
Return type
clifford_3_1
qiskit.circuit.library.clifford_3_1()
Clifford template 3_1:
┌───┐┌───┐┌───┐
q_0: ┤ S ├┤ S ├┤ Z ├
└───┘└───┘└───┘
Returns
template as a quantum circuit.
Return type
clifford_4_1
qiskit.circuit.library.clifford_4_1()
Clifford template 4_1:
┌───┐
q_0: ──■──┤ X ├──■───X─
┌─┴─┐└─┬─┘┌─┴─┐ │
q_1: ┤ X ├──■──┤ X ├─X─
└───┘ └───┘
Returns
template as a quantum circuit.
Return type
clifford_4_2
qiskit.circuit.library.clifford_4_2()
Clifford template 4_2:
q_0: ───────■────────■─
┌───┐┌─┴─┐┌───┐ │
q_1: ┤ H ├┤ X ├┤ H ├─■─
└───┘└───┘└───┘
Returns
template as a quantum circuit.
Return type
clifford_4_3
qiskit.circuit.library.clifford_4_3()
Clifford template 4_3:
┌───┐ ┌─────┐
q_0: ┤ S ├──■──┤ SDG ├──■──
└───┘┌─┴─┐└─────┘┌─┴─┐
q_1: ─────┤ X ├───────┤ X ├
└───┘ └───┘
Returns
template as a quantum circuit.
Return type
clifford_4_4
qiskit.circuit.library.clifford_4_4()
Clifford template 4_4:
┌───┐ ┌─────┐
q_0: ┤ S ├─■─┤ SDG ├─■─
└───┘ │ └─────┘ │
q_1: ──────■─────────■─
Returns
template as a quantum circuit.
Return type
clifford_5_1
qiskit.circuit.library.clifford_5_1()
Clifford template 5_1:
q_0: ──■─────────■─────────■── ┌─┴─┐ ┌─┴─┐ │ q_1: ┤ X ├──■──┤ X ├──■────┼── └───┘┌─┴─┐└───┘┌─┴─┐┌─┴─┐ q_2: ─────┤ X ├─────┤ X ├┤ X ├ └───┘ └───┘└───┘
Returns
template as a quantum circuit.
Return type
clifford_6_1
qiskit.circuit.library.clifford_6_1()
Clifford template 6_1:
┌───┐ ┌───┐┌───┐ q_0: ┤ H ├──■──┤ H ├┤ X ├ ├───┤┌─┴─┐├───┤└─┬─┘ q_1: ┤ H ├┤ X ├┤ H ├──■── └───┘└───┘└───┘
Returns
template as a quantum circuit.
Return type
clifford_6_2
qiskit.circuit.library.clifford_6_2()
Clifford template 6_2:
┌───┐ q_0: ┤ S ├──■───────────■───■─ ├───┤┌─┴─┐┌─────┐┌─┴─┐ │ q_1: ┤ S ├┤ X ├┤ SDG ├┤ X ├─■─ └───┘└───┘└─────┘└───┘
Returns
template as a quantum circuit.
Return type
clifford_6_3
qiskit.circuit.library.clifford_6_3()
Clifford template 6_3:
┌───┐ ┌───┐
q_0: ─X──■─┤ H ├──■──┤ X ├─────
│ │ └───┘┌─┴─┐└─┬─┘┌───┐
q_1: ─X──■──────┤ X ├──■──┤ H ├
└───┘ └───┘
Returns
template as a quantum circuit.
Return type
clifford_6_4
qiskit.circuit.library.clifford_6_4()
Clifford template 6_4:
┌───┐┌───┐┌───┐┌───┐┌───┐┌───┐
q_0: ┤ S ├┤ H ├┤ S ├┤ H ├┤ S ├┤ H ├
└───┘└───┘└───┘└───┘└───┘└───┘
Returns
template as a quantum circuit.
Return type
clifford_6_5
qiskit.circuit.library.clifford_6_5()
Clifford template 6_5:
┌───┐
q_0: ─■───■───┤ S ├───■───────
│ ┌─┴─┐┌┴───┴┐┌─┴─┐┌───┐
q_1: ─■─┤ X ├┤ SDG ├┤ X ├┤ S ├
└───┘└─────┘└───┘└───┘
Returns
template as a quantum circuit.
Return type
clifford_8_1
qiskit.circuit.library.clifford_8_1()
Clifford template 8_1:
┌───┐ ┌───┐ ┌───┐┌─────┐
q_0: ──■───────┤ X ├─┤ S ├─┤ X ├┤ SDG ├
┌─┴─┐┌───┐└─┬─┘┌┴───┴┐└─┬─┘└┬───┬┘
q_1: ┤ X ├┤ H ├──■──┤ SDG ├──■───┤ H ├─
└───┘└───┘ └─────┘ └───┘
Returns
template as a quantum circuit.
Return type
clifford_8_2
qiskit.circuit.library.clifford_8_2()
Clifford template 8_2:
┌───┐
q_0: ──■─────────■───┤ S ├───■────────────
┌─┴─┐┌───┐┌─┴─┐┌┴───┴┐┌─┴─┐┌───┐┌───┐
q_1: ┤ X ├┤ H ├┤ X ├┤ SDG ├┤ X ├┤ S ├┤ H ├
└───┘└───┘└───┘└─────┘└───┘└───┘└───┘
Returns
template as a quantum circuit.
Return type
clifford_8_3
qiskit.circuit.library.clifford_8_3()
Clifford template 8_3:
q_0: ─────────────────■───────────────────────■──
┌───┐┌───┐┌───┐┌─┴─┐┌─────┐┌───┐┌─────┐┌─┴─┐
q_1: ┤ S ├┤ H ├┤ S ├┤ X ├┤ SDG ├┤ H ├┤ SDG ├┤ X ├
└───┘└───┘└───┘└───┘└─────┘└───┘└─────┘└───┘
Returns
template as a quantum circuit.
Return type
RZXGate template circuits
Template circuits with RZXGate
.
rzx_yz
qiskit.circuit.library.rzx_yz(theta=None)
RZX-based template for CX - RYGate - CX.
┌────────┐ ┌─────────┐┌─────────┐┌──────────┐
q_0: ──■──┤ RY(-ϴ) ├──■──┤ RX(π/2) ├┤0 ├┤ RX(-π/2) ├
┌─┴─┐└────────┘┌─┴─┐└─────────┘│ RZX(ϴ) │└──────────┘
q_1: ┤ X ├──────────┤ X ├───────────┤1 ├────────────
└───┘ └───┘ └─────────┘
Parameters
theta (ParameterValueType | None) –
rzx_xz
qiskit.circuit.library.rzx_xz(theta=None)
RZX-based template for CX - RXGate - CX.
┌───┐ ┌───┐┌─────────┐┌─────────┐┌─────────┐┌──────────┐»
q_0: ┤ X ├─────────┤ X ├┤ RZ(π/2) ├┤ RX(π/2) ├┤ RZ(π/2) ├┤0 ├»
└─┬─┘┌───────┐└─┬─┘└─────────┘└─────────┘└─────────┘│ RZX(-ϴ) │»
q_1: ──■──┤ RX(ϴ) ├──■───────────────────────────────────┤1 ├»
└───────┘ └──────────┘»
« ┌─────────┐┌─────────┐┌─────────┐
«q_0: ┤ RZ(π/2) ├┤ RX(π/2) ├┤ RZ(π/2) ├
« └─────────┘└─────────┘└─────────┘
«q_1: ─────────────────────────────────
«
Parameters
theta (ParameterValueType | None) –
rzx_cy
qiskit.circuit.library.rzx_cy(theta=None)
RZX-based template for CX - RYGate - CX.
┌──────────┐
q_0: ──■─────────────■─────────────────────────────────┤0 ├───────────
┌─┴─┐┌───────┐┌─┴─┐┌────────┐┌──────────┐┌───────┐│ RZX(-ϴ) │┌─────────┐
q_1: ┤ X ├┤ RY(ϴ) ├┤ X ├┤ RY(-ϴ) ├┤ RZ(-π/2) ├┤ RX(ϴ) ├┤1 ├┤ RZ(π/2) ├
└───┘└───────┘└───┘└────────┘└──────────┘└───────┘└──────────┘└─────────┘
Parameters
theta (ParameterValueType | None) –
rzx_zz1
qiskit.circuit.library.rzx_zz1(theta=None)
RZX-based template for CX - RZGate - CX.
»
q_0: ──■────────────────────────────────────────────■───────────────────────»
┌─┴─┐┌───────┐┌────┐┌───────┐┌────┐┌────────┐┌─┴─┐┌────────┐┌─────────┐»
q_1: ┤ X ├┤ RZ(ϴ) ├┤ √X ├┤ RZ(π) ├┤ √X ├┤ RZ(3π) ├┤ X ├┤ RZ(-ϴ) ├┤ RZ(π/2) ├»
└───┘└───────┘└────┘└───────┘└────┘└────────┘└───┘└────────┘└─────────┘»
« ┌──────────┐ »
«q_0: ───────────────────────────────┤0 ├──────────────────────»
« ┌─────────┐┌─────────┐┌───────┐│ RZX(-ϴ) │┌─────────┐┌─────────┐»
«q_1: ┤ RX(π/2) ├┤ RZ(π/2) ├┤ RX(ϴ) ├┤1 ├┤ RZ(π/2) ├┤ RX(π/2) ├»
« └─────────┘└─────────┘└───────┘└──────────┘└─────────┘└─────────┘»
«
«q_0: ───────────
« ┌─────────┐
«q_1: ┤ RZ(π/2) ├
« └─────────┘
Parameters
theta (ParameterValueType | None) –
rzx_zz2
qiskit.circuit.library.rzx_zz2(theta=None)
RZX-based template for CX - PhaseGate - CX.
»
q_0: ──■────────────■─────────────────────────────────────────────────────»
┌─┴─┐┌──────┐┌─┴─┐┌───────┐┌─────────┐┌─────────┐┌─────────┐┌───────┐»
q_1: ┤ X ├┤ P(ϴ) ├┤ X ├┤ P(-ϴ) ├┤ RZ(π/2) ├┤ RX(π/2) ├┤ RZ(π/2) ├┤ RX(ϴ) ├»
└───┘└──────┘└───┘└───────┘└─────────┘└─────────┘└─────────┘└───────┘»
« ┌──────────┐
«q_0: ┤0 ├─────────────────────────────────
« │ RZX(-ϴ) │┌─────────┐┌─────────┐┌─────────┐
«q_1: ┤1 ├┤ RZ(π/2) ├┤ RX(π/2) ├┤ RZ(π/2) ├
« └──────────┘└─────────┘└─────────┘└─────────┘
Parameters
theta (ParameterValueType | None) –
rzx_zz3
qiskit.circuit.library.rzx_zz3(theta=None)
RZX-based template for CX - RZGate - CX.
»
q_0: ──■─────────────■──────────────────────────────────────────────────────»
┌─┴─┐┌───────┐┌─┴─┐┌────────┐┌─────────┐┌─────────┐┌─────────┐┌───────┐»
q_1: ┤ X ├┤ RZ(ϴ) ├┤ X ├┤ RZ(-ϴ) ├┤ RZ(π/2) ├┤ RX(π/2) ├┤ RZ(π/2) ├┤ RX(ϴ) ├»
└───┘└───────┘└───┘└────────┘└─────────┘└─────────┘└─────────┘└───────┘»
« ┌──────────┐
«q_0: ┤0 ├─────────────────────────────────
« │ RZX(-ϴ) │┌─────────┐┌─────────┐┌─────────┐
«q_1: ┤1 ├┤ RZ(π/2) ├┤ RX(π/2) ├┤ RZ(π/2) ├
« └──────────┘└─────────┘└─────────┘└─────────┘
Parameters
theta (ParameterValueType | None) –